

Xilinx Version

XC3S1000 Development Board

Experiment Guider

Ver1.0

Eleckits
www.eleckits.com

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 2

Catalogue
Experiment 1 LED Control Experiment.............. 5

1.1.1 Experiment purpose ...5
1.1.2 Experiment theory..5
1.1.3 Experiment content ..5
1.1.4 Experiment steps ..5
1.1.5 Experiment result ...5

Experiment 2 Divider Experiment 6

1.2.1 Experiment purpose ...6
1.2.2 Experiment theory..6
1.2.3 Experiment content ..6
1.2.4 Experiment result ...6

Experiment 3 State device application experiment ... 7
1.3.1 Experiment purpose ...7
1.3.2 Experiment theory..7
1.3.3 Experiment content ..10
1.3.4 Experiment result ...10

Experiment 4 Digital tube control experiment 10

1.4.1 Experiment purpose ...10
1.4.2 Experiment theory..10
1.4.3 Experiment content ..12
1.4.4 Experiment result ...12

Experiment 5 Counter experiment................. 12
1.5.1 Experiment purpose ...12
1.5.2 Experiment theory..12
1.5.3 Experiment content ..13
1.5.4 Experiment result ...13

Experiment6 Button debounce experiment......... 14
1.6.1 Experiment purpose ...14
1.6.2 Experiment theory..14
1.6.3 Experiment content ..14
1.6.4 Experiment steps ..15
1.6.5 Experiment result ...15

Experiment 7 Buzzer control experiment........... 16
1.7.1 Experiment purpose ...16
1.7.2 Experiment theory..16

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 3

1.7.3 Experiment content ..17
1.7.4 Experiment steps ..17
1.7.5 Experiment result ...17

Experiment8 LCD display control experiment 17
2.1.1 Experiment purpose ...17
2.1.2 Experiment theory..18
2.1.3 Experiment content ..22
2.1.4 Experiment steps ..22
2.1.5 Experiment result ...22

Experiment9 VGA display control experiment 22
2.2.1 Experiment purpose ...22
2.2.2 Experiment theory..22
2.2.3 Experiment content ..24
2.2.4 Experiment steps ..25
2.2.5 Experiment result ...25

Experiment10 Serial communication experiment ... 25

2.3.1 Experiment purpose ...25
2.3.2 Experiment theory..25
2.3.3 Experiment content ..27
2.3.4 Experiment steps ..27
2.3.5 Experiment result ...27
Experiment11 PS2 interface control and display experiment ...28
2.4.1Experiment purpose ..28
2.4.2 Experiment theory..28
2.4.3 Experiment content ..29
2.4.4Experiment result ..29

Experiment12 USB interface read/write control

experiment 30
2.5.1 Experiment purpose ...30
2.5.2 Experiment theory..30
2.5.3 Experiment content ..32
2.5.4 Experiment steps ..33
2.5.5 Experiment result ...39

Experiment 13 SRAM read/write control experiment 40

3.1.1 Experiment purpose ...40
3.1.2 Experiment theory..40
3.1.3 Experiment content ..43
3.1.4 Experiment steps ..43

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 4

3.1.5 Experiment result ...43

Experiment14 SDRAM read/write control experiment44
3.2.1 Experiment purpose ...44
3.2.2 Experiment theory..44
3.2.3 Experiment content ..54
3.3.4 Experiment steps ..55
3.2.5 Experiment result ...59

Experiment15 FLASH read/write control experiment 60

3.3.1 Experiment purpose ...60
3.3.2 Experiment theory..60
3.3.3 Experiment content ..64
3.3.4 Experiment result ...64

Experiment16 Data flow control experiment........ 65
4.1.1 Experiment purpose ...65
4.1.2 Experiment theory..65
4.1.3 Experiment content ..72
4.1.4 Experiment steps ..73
4.1.5 Experiment result ...74

Experiment17 MicroBlaze control LED experiment.. 75
5.1.1Experiment purpose ..75
5.1.2 Experiment theory..75
5.1.3 Experiment content ..78
5.1.4 Experiment steps ..79
5.1.5 Experiment result ...93

Experiment18 MicroBlaze control serial

communication experiment....................... 94
5.2.1 Experiment purpose ...94
5.2.2 Experiment theory..94
5.2.3 Experiment content ..96
5.2.4 Experiment steps ..96
5.2.5 Experiment result ...103

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 5

Experiment 1 LED Control Experiment

1.1.1 Experiment purpose

1．Control 8 LED’S displaying status by 4 buttons on development board.

1.1.2 Experiment theory

Write one button on the development board to control the LED displaying.
Detailed displaying program is as following:

State SW2 SW3 SW4 SW5 LED0 LED1 LED2 LED3 LED4 LED5 LED6 LED7
S1 1 1 1 0 0 0 0 0 0 0 0 1
S2 1 1 0 1 0 0 0 0 0 0 1 0
S3 1 0 1 1 0 0 0 0 0 1 0 0
S4 0 1 1 1 0 0 0 0 1 0 0 0
S5 1 1 0 0 0 0 0 1 0 0 0 0
S6 1 0 0 1 0 0 1 0 0 0 0 0
S7 0 0 1 1 0 1 0 0 0 0 0 0
S8 0 1 1 0 1 0 0 0 0 0 0 0

Default 0 0 0 0 0 0 0 0 0

1.1.3 Experiment content

Write button controlling LED program and achieve them one the
development board.

1.1.4 Experiment steps

 Programmings download on Xilinx ISE 11. Debug on the development board.
Detailed ISE software operation is referenced to《ISE Software Using
Description》.

1.1.5 Experiment result

You can see the expected LED turns to shining on the development
board.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 6

Experiment 2 Divider Experiment

1.2.1 Experiment purpose

1．Design one divider which is specified frequency coefficient.

1.2.2 Experiment theory

Frequency divided means the processed clock frequency is lower than
input clock frequency. On the contrary, the output clock frequency is higher
input one, we call it frequency multiplication. Frequency divided is achieved
by user programming. The frequency multiplication is achieved by PLL or DLL
which FPGA owns itself. Theoretically speaking, there is no limitation of
frequency divided if the clock cycle is less then endless. However, frequency
multiplication is upon the FPGA’s features and some constraints in actual
design. They will decide the frequency after multiplied.

Divider is the base of digital circuit design. Not only in image processing but
also in audio signal processing, you need to use it a lot.

Experiment development board provides one 50MHz clock frequency. In
actual using, we seldom to use the precise clock frequency 50MHz. We use
the frequency lower than 50MHz. For example, in the video processing, most
of the chips' working frequency like SAA7121 is in 20-30MHz, the working
frequency of the clock line SCL of IIC controller is in 20-30MHz and etc. We
have to provide clock frequency dividing to the development boards to make
them suit the different application programs as the main clock frequency.

There are many ways of frequency dividing. Or you can generate the clock
that has different duty cycles and frequencies. The frequency factor normally
used is integer power of 2 and frequency deviding’s duty cycle is 50%.

1.2.3 Experiment content

Do the 2 integer power frequency dividing of the input clock 50MHz.
Powers are：18，19，20，21，22，23，24，25. Then, use the divided clocks
to control 8 LEDs on the board shinning. Watch the dividing effect.

1.2.4 Experiment result

See LED on the board shinning by different frequencies. At the high
frequency, we think it keep shining as the visual sensitivity is not enough.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 7

Experiment 3 State device application
experiment

1.3.1 Experiment purpose

1．Learn how to use ISE.
2．Know the structure of state machine.
3．Learn how to use state machine to write relatively complex programs.

1.3.2 Experiment theory

State machine design is the core part of HDL designing. Almost all
designs use its thought. State machine is the cycle mechanism
composited by serial of states. This structure can make programmer to use
HDL language better. Meanwhile, the state machine with certain style can
improve the readability and the debugging of the programs.

There are many elements of state machine design. Following are some
important ones:
● State machine’s coding. Binary、gray-code coding uses least triggers
and more combination logics. But the one-hot coding is opposite.
Because CPLD providing more combination logics and FPGA providing
more triggers, CPLD uses gray-code，and normally FPGA uses one-hot
coding。On the other hand, gray-code and binary is more effective to
small design and one-hot suits large state machines more.
● About FSM coding. FSM has two modes: Miller and Moore. Elements
are input (including reset), status (including current state operation), state
transfer condition and state output condition. There are many ways and
skills of FSM designing. Generally speaking, there are two types. One is
write state transfer, operation and judging to one module(process、block）.
The other is write state transfer in one module, state operation and
judging in another one (in Verilog codes, equals to use two “always”
blocks).
The second way is better. Following are reasons:

First, FSM is the same as others. You’d better uses timing synchronization
way to design. No repetition of advantages here. After state machine
achieved, state transfer is achieved by register which is the part of the time
synchronization. The judging of state transfer condition is achieved by the
judging of combination logic. Why the second way is more reasonable than
the first one, is the second coding put the synchronization timing and
combination logic to different program blocks(process，block）to achieve. The

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 8

advantages of this are not only for better the reading, understanding,
maintaining, but also better for the codes optimizing, suitable timing
constraint condition adding, designing achieved by placement and routing
device.
● Initial status and default status

One complete state device (nice robustness) should have initialization state
and default state. When the chip is powered or reset, the state device
should reset all judgments conditions automatically and enter initialization
state. One thing need you attention. Most of FPGA has GSR (Global
Set/Reset）signal. When FPGA is powered, GSR signal higher, it will
reset/locate all registers, RAM units and etc. It is the logic configuration in
FPGA and not yet be effective. So it cannot guarantee entering the
initialization state correctly. Therefore, use GSR to enter FPGA initialization
state usually will cause some problems. The normal way is use the
asynchronous reset signal, and sometimes synchronous reset. However,
please attention to the synchronous reset’s logic design. Another way to
solve this problem is set default initialized state codes zero. In this way,
when GST reset, the state device will enter initialization state automatically.

On the other hand, the state device should have one default (default) state.
When can meet transfer conditions or state changed suddenly, it can protect
the logic from “bad cycle”. It is the important requirement to the state
device’s robustness. The state device has to have the feature “self-recover”.
To coding is to case, and please pay high attention to sentence if-else. You
have to complete condition judgments sentences. In VDL, when use CASE
sentences, you have to use “When Others “to set up default state. When use
sentence “IF...THEN...ELSE”, you have to specify default state in “ELSE”. In
Verilog, when use “case” sentences, you have to use “default” to set up
default state. Notes of using “if ...else” are similar.

Here introduce another skill: most of the synthesizers support Verilog coding
state device’s complete state feature—“full case”. This feature is used to
specify the state that integrates the state device into complete state. For
example: following are the command formats which Synplicity's synthesis
tools（Synplify/Synplify Pro,Amplify，etc）support:

case (current_state) // synthesis full_case
2’b00 : next_state <= 2’b01;
2’b01 : next_state <= 2’b11;
2’b11 : next_state <= 2’b00;
//these two sections of codes are equal.
case (current_state)
2’b00 : next_state <= 2’b01;
2’b01 : next_state <= 2’b11;
2’b11 : next_state <= 2’b00;
default : next_state <= 2bx;
● You can use parameter to definite the state device. We do not suggest

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 9

use define macro to definite. When define Marco is programming, it will
replace the Marco definite in whole design automatically. However,
parameter only defines the module internal specifications. They will not
be confused with other state devices out of the module.
● When program the state device, you’d better write state transfer and
works in each state separately in two or more always sub-blocks. It makes
reading easier and is better for the adjusting. Following are details
（suggest use three-step FAS description way）：
always @ (posedge clk or negedge rst_n)
if(!rst_n)
state <= 2’b00 ;
else
state <= next_state ;
always @ (posedge clk or negedge rst_n)
if(!rst_n)
next_state <= 2’b00 ;
else
case (state)
2’b00：begin if(en) next_state<=2’b01; else next_state<=state; end
2’b01：begin if(en) next_state<=2’b10; else next_state<=state; end
2’b10：begin if(en) next_state<=2’b11; else next_state<=state; end
2’b11：begin if(en) next_state<=2’b00; else next_state<=state; end
default：state<=2’b00;
endcase
always @ (posedge clk or negedge rst_n)
if(!rst_n)
dout<=4’b0000;
else
case (state)
2’b00：dout<=4’b0001;
2’b01：dout<=4’b0011;
2’b10：dout<=4’b0111;
2’b11：dout<=4’b1111;
default：dout<=4’b0000;
endcase

The state device upper uses three-step-description way. One always
block is in charge of sending next_state value to state. One always block is in
charge of judging trigger and generating next_state. The third one includes
the descriptions of works to be finished by state device in each state step.
There are many advantages of this way: simple structure, better for timing
constraints, no combinational logic output, and better for controlling synthesis,
high reliabilities and maintains of the codes.

ISE provides users another special input way: state device input. This way
is more complex in inputting and the using range is very limited.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 10

1.3.3 Experiment content

Design one state device which makes 8 LED on the development board
shinning in cycle.

1.3.4 Experiment result

See 8 LED on the development board turned on in cycle.

Experiment 4 Digital tube control
experiment

1.4.1 Experiment purpose

1．Learn digital tube working principles.
2．Achieve control of digital tube’s display by programming.

1.4.2 Experiment theory

Following is the digital tube appearance drawing:

Digital tube displayer is the display device which is often used in digital

system experiment. Usually it displays decimal or hex numbers. Therefore we
have to decoding all binary numbers used in the experiment. Change them to
decimal or hex numbers. There are two kinds of digital tube displayer: common
cathode (CC) and common anode (CA). Development board uses CA
connection and high level is valid. Input signals are D0,D1,D2,D3,
corresponding 8 segments outputting are a,b,c,d,e,f,g,Dp. Their relations are
as following:
D0 D1 D2 D3 a b c d e f g Dp
0 0 0 0 1 1 1 1 1 1 0 0

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 11

0 0 0 1 0 1 1 0 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1 0
0 0 1 1 1 1 1 1 0 0 1 0
0 1 0 0 0 1 1 0 0 1 1 0
0 1 0 1 1 0 1 1 0 1 1 0
0 1 1 0 1 0 1 1 1 1 1 0
0 1 1 1 1 1 1 0 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1 0
1 0 0 1 1 1 1 1 0 1 1 0
1 0 1 0 1 1 1 0 1 1 1 0
1 0 1 1 0 0 1 1 1 1 1 0
1 1 0 0 1 0 0 1 1 1 0 0
1 1 0 1 0 1 1 1 1 0 1 0
1 1 1 0 1 0 0 1 1 1 1 0
1 1 1 1 1 0 0 0 1 1 1 0

In the experiment, you have to attention to that each segment of LED has to
be corresponding to the program on the monitor.

There are 4 digital tubes on the development board which reuse 8 data lines.
It is easy to achieve if 4 tubes display the same value. If you want to display
1234, you may need to change the data line’s content. You have to find a way
to make 4 tubes display 4 contents separately. In many situations, to save I/O
pins and internal logic source, we often use dynamic scanning to display.
Dynamic scanning uses hours theory and man’s persistence of version effect.
For example, one 4 bytes dynamic scanning monitor’s displaying cycle can be
divided into 4 periods:

Period 1------→period 2-------→period 3-------→period4

Each cycle only strobe one byte data. In cycle 1, displays the first data. The

second cycle displays the second one… After scanned 4 periods, recycle by
order. If the scan speed is fast enough, it will make people feel 4 digital tubes
are displaying at the same time.

4 bytes scan digital monitor has 4 groups of BCD code (4 bytes) input lines,
8 pieces of 8 period decoding output lines and 4 strobing lines. In scanning,
choose one group data from 4 groups of BCD data. Decode them by BCD
shortness of breath decoder and then output. At the same time, 3/8 decoder
generates strobe signal. In this moment, the monitor is changed to the digital
codes to be output. Then, choose the next group of data, decoding and output.
Bit strobe is down by one bit correspondingly. Strobe the next digital code and
output it.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 12

1.4.3 Experiment content

1．Make four digital tubes display the same value, from 1 to f.
2．Make four digital tubes display different values, output 1234.

1.4.4 Experiment result

See the requested output result on the development board.

Experiment 5 Counter experiment

1.5.1 Experiment purpose

1．Handle the counters basic concept and implementation.
2．Write one counter program.
3．Display the process of counting by digital tube.
4．Change counting frequency. Watch for counting result.

1.5.2 Experiment theory

Like the divider, the counter is also one of the basic design ways in electrical
designing. We can generate many feature modules based on the counter：

Divider：actually, the divider is the clock level whose output is controlled by a
counter. When the counter is full, turn the output clock, or make the output
clock level equal to the certain bit level of the counter. In this way, we can
generate one clock after divided.

Frequency counter：the frequency counter is the normal measuring
instrument. It measures the signal frequency by count the signal pulse in unit
time. When frequency counter start to work, it will generate count permit

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 13

signal that is gate signal. The width of the gate signal is unit time, e.g. 1s or
10ms. Count the signal be tested in the valid time of gate signal, and then,
convert it to signal frequency. When the measurement is finished, you have to
lock save the counting value or leave some time to show the measurement
value. Before next measurement, clear the counter.

Macro generator: Macro generator can generate one or more specified
width Macros according to the requirements. There are many way to achieve.
Most of them are that generate one high level and start counting. When the
counter is full, lower the level. In this way, you can generate different pulse
width Macros by change the counting value.

There are many kinds of counters. Either plus counting or minus
counting is ok. When the counter is full, both clear up and keep the full state
are ok. The actual design has to according to the demands to do the
programming.

1.5.3 Experiment content

This experiment needs to design one counter and display the counting
process on the digital tubes.-

As the experiment required, the process can be divided into three main parts:
frequency dividing, counting and displaying. As the clock frequency provide by
development board is 50MHz which cannot be recognized by human eyes,
four digital tubes cannot display the huge number generated by such high
frequency. Therefore, we have to divide the 50MHZ first which can guarantee
the circle of counter’s each number is around 1 second.

The counter part is set up by several registers. The raising of each clock will
cause the number addition 1 in the register. The counter’s reset value is 0000.
When the counting reaches 9999, the counter returns to 0000 and restart the
counting.

Digital tube controlling sees experiment 4.

1.5.4 Experiment result

See the counting process of the counter on the development board.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 14

Experiment6 Button debounce
experiment

1.6.1 Experiment purpose

1．Be familiar with the development environment of ISE11.1;
2．Be familiar with the usage of development board；
3．Learn the operation principle of the button and the way of anti-shake；
4．Program and set an anti-shake circuit.

1.6.2 Experiment theory

If we intend to use the four SW buttons to do the counting input, we should
firstly know how many times the buttons have been pressed. In this case, we
can’t just detect if the button is pressed or not by using the rising edge of the
input clock as before. Supposed that the clock frequency is 10Hz after
frequency division, and we keep the button being pressed for one second, if
we simply detect it by the clock rising edge, the program will tell us that the
button has been pressed for ten times.

This circumstance also exists in our commonly used keyboard. We need
part of the circuit to prevent the above circumstance occur.

Therefore, in order to prevent shaking, we should detect the falling edge and
rising edge of the button, rather than detect if the button is pushed. For
example, when pressing the button, we should check the falling edge of FPGA
pin connected to the button, and the rising edge when releasing it. In this case,
we can count input according to the times of pressing and releasing,
regardless of how long the button is pressed.

1.6.3 Experiment content

This experiment is to design a debounce circuit which is used to check the
button’s input. Set a counter. The initial value is zero. Use debounce checking
circuit to check the button SW2’s input. Each time we get bottom’s press or
release, the counter’s value is added 1. Show the counter’s value at the digital
tubes.

This experiment mainly is set up by three parts: button anti-shake, counting
and digital tube controlling.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 15

1.6.4 Experiment steps

1．Set a new project；
2．Generate the source programs of anti-shaking button, counting, and

digital tube controlling separately;

3．Input a top-level file, and call the three modules mentioned above;

See the changes in the folder after saving:

4．Integrate, layout, and route;
5．Download and debug.

1.6.5 Experiment result

Control the digital tube’s displaying by SW2. The displaying value is added 1

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 16

with every press.

Experiment 7 Buzzer control
experiment

1.7.1 Experiment purpose

1．Learn buzzer’s structure and working theory.
2．Learn to control buzzer to send different frequencies’ voices.

1.7.2 Experiment theory

Compared to control playing music by micro-processer (CPU or MCU), the
logic of playing music by pure hardware is more complex. If you do not use
powerful EDA tool or hardware description language, only use traditional
number logic, you will find it is really very hard to achieve even the simplest
circuit.

First, this experiment is used to find the different sounds of buzzers’ at
different frequencies on development board. See whether it is the same as the
following table. Then, do the programming. The buzzer sends the sounds do,
re, mi, fa,so, la in turn when clicks the development board.
 do re mi fa so la
frequency
/Hz

262 294 330 349 392 440

circle
/us

3816 3401 3030 2865 2551 2273

Second, this experiment needs the program to control the buzzer on the
development board which used the VerilogHDL language. As we know, the
sounds frequency value of each note composing the music and the lasting
time are two basic elements to guarantee the music’s lasting displaying. The
details are as following:

 You can get the note’s frequency by the part speaker control as upper

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 17

picture shows. Speaker control is kind of frequency divider controller. The clk1
input the higher clock frequency (as 12MHz, 25MHz and etc). After dividing,
there will be speaking out output. It will be connected to the buzzer directly.

The lasting time of note is upon the different music spread and the lasting
beats. In upper picture, tone index is checkout table of notes. Input clk is the
lower clock (8Hz or 10Hz and etc). The checkout table searches the note to be
played by the “plus 1” order and send them to the module tone maker. The
tone maker here is the 8-bit binary counter (the highest value is 138). The
frequency is at 4Hz. In this way, the stay time of counting one number is 0.25S
which is equal to the four-four beat quarter note lasting time when the lasting
time of whole note is set 1 second.

Through the upper description, we can use the hardware to achieve different
notes’ frequency and lasting time. In this way, “Chinese Romeo and Juliet” can
be played consistently.

1.7.3 Experiment content

1．Use buzzer to make different notes sounds on the development board.
2．Make a program to play the “Chinese Romeo and Juliet”.

1.7.4 Experiment steps

Program and download on Xilinx ISE. Debug on the development board.

1.7.5 Experiment result

Hear the “Chinese Romeo and Juliet”.

Experiment8 LCD display control
experiment

2.1.1 Experiment purpose

1、Learn the control theory of char-LCD.
2、Handle the basic ideas and methods of driver designing by FPGA.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 18

2.1.2 Experiment theory

1、LCD 1602 brief introduction：
There are two types of LCD screen: dot matrix and LCD type. Experiment

here uses LCD screen. It is character type can show 2 lines 16 characters.
LCD module uses 14-pin standard interface:

Pin 1：VSS is ground power.
Pin 2：VDD connects to 5V + power;
Pin 3：V0 is LCD contrast adjusting terminal. The contrast is weakest

when connect to “+” and is highest when connected to ground power. Over
high contrast will cause “ghost shadow”. During the use, you can adjust it by
one 10K potential regulator.

Pin 4：RS is register selection. Data register select when it is high level,
and command register select when it is low level.

Pin 5：RW is read/write signal. Read during the high level while write
during the low level. When both RS and RW are low level, you can write
command or show the address. When RS is low level and RW is high lever,
you can read busy signal. When RS is high level and RW is low level, you can
write the data.

Pin 6：E is enable terminal. When E jumps to low level from high level,
LCD module can do the commands.

Pin 7~14：D0～D7 are 8-bit two-way data lines.
The character generating memory (CGROM) internal of the 1602 LCD

module has already stored 160 different dot-matrix character graphics, like
table 1 shows. These characters are: Arabic numbers, capital letters and low
case letters, commonly used symbols, Japanese Kana and etc. Each symbol
has one fixed code. For example: the capital letter “A” has the code
0100_0001B（41H）. During the displaying, the module shows the dot-matrix
graphic in the address in which way we can see the letter. In programming,
you only need to input the related character’s address, and the LCD will output
the corresponding character.

Following is the table of relationships between each character and
CGROM.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 19

Table 1 CGRAM character and address chart

2、LCD driver designing requirements:
LCD driver’s design has to clear the LCD operation command, as

following:

Table 2 LCD command table

All of its read/write operation, screens and cursor operation are finished by
command programming. (Note: 1 is high level and 0 is low level).

Command 1：clear displaying. Command code is 01H and the cursor is
reset to position 00H.

Command 2：cursor reset. Cursor returns to address 00H.
Command 3：cursor and displaying mode set I/D.Cursor moving direction

is high level right moving and low level left moving. S: all
characters on the screen are moved left or right. High level
means valid and low level means invalid.

Command 4：displaying switch controlling. D：control overall display’s on
and off. High level means display of on and low level means
display of off. C：control cursor’s on and off. High level means
cursor exists and low level means no cursor. B：control

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 20

whether the cursor flashing or not. High level means flashing
and low level means no flashing.

Command 5：cursor or displacement shows S/C. Moving displays
character during high level while cursor in low level.

R/L：character or cursor moving direction. High level is right
moving and low level is left moving.

Command 6：feature setting command. DL：in high level is 4-bit general
line，and in low level is 8-bit general line. N：single line
displaying in low level and double lines displaying in high level.
F: in low level shows the Dort-matrix 5x7，while in high level
shows 5x10.

Command 7：character generator RAM address set
Command 8：DDRAM address set
Command 9：read busy signal and cursor address. BF：is busy signal.

High level means busy. At this time, the module cannot
receive command or data. If it is low level, means free.

Command 10：write data
Command 11：read data

3、FPGA driver circuit design:
The displaying features to be achieved here are as following: use 5*10

Dort-matrix,; double lines displaying; the first line shows “Welcome to SOLID!”;
the second line shows “SOLID!”. As one line can only show 16 characters, the
screen has to be left-moving displayed.

There are mainly two modules in this designed driver program:
oneischar_ram whose main feature is to output the addresses in CGRM
(character generator register memory) of the related characters’ according to
the input addresses. In LCD controlling displaying, user only needs to provide
related character’s address to display it. In char_ram, firstly, you need to set all
characters’ related addresses (according to upper table), then define new
address of characters to be used to select output. Another module is LCD’s
driver module lcd. This module is used in driver lcd normal working. LDC is a
slow displaying device. Therefore, the clock must meet the requirements. Here
the clock circle got by frequency division of 50MHz is around 100us (about
10HZ) to meet slow displaying requirements. LCD driver is achieved by one
status device. State picture is as following:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 21

LCD driver circuit status picture

Detailed processing is as following:
Powered and reset, the system enter IDLE statue.
First enter SETFUNCTION status. Do command 6 (do command here

means write relate control character to data terminal, and set RS and R/W).
Set bit numbers of general line and the kind of Dort-matrix to display. After one
clock circle (around 100us), enter SWITCHMODE state. Do command 4. set
the switch of overall display, switch of cursor and whether the cursor is
shinning or not. When the setting is finished, enter CLEAR status and do
command 1. Clear the screen. Then, enter SETMODE status and do
command 3. Set whether the characters and cursor is moving and moving
direction. After it, enter SETDDRAM status and do command 8. Set the initial
address of DDRAM. Here set the first line displaying internal address:
1000_0000. The highest bit 1 is reserved bit and following 7 bits are initial
address. After it, enter WRITERAM status. Write the address of the character
to be displayed into DDRAM. Here the first line displayed is “Welcome to
SOLID”（one line is only can show 16 characters）When the displaying is
finished, re-enter the SETDDRAM status. Set the initial address of the
displaying in second line: 1100_0000. In second line, shows: “SOLID!” And
then, enter SHIFT status. Do command 5. Set the character left moving. In
moving process, the first line shows “Welcome to SOLID!”completely. Then,
keep cycling in IDLE and SHIFT. Keep the characters in left-moving displaying
status.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 22

2.1.3 Experiment content

This experiment will read data form ROM and display them through LCD.

2.1.4 Experiment steps

1．Design general feature module. Input verilog design file which can
achieve LED displaying character.

2．Complication debugging passed.
3．Download program to experiment board. Debug successfully.

2.1.5 Experiment result

See the first line in LED shows：“Welcome to SOLID”，第二行显示“SOLID!”
Then, left-moving display “Welcome to SOLID!”in cycle.

Experiment9 VGA display control
experiment

2.2.1 Experiment purpose

1．Learn CRT monitor working theory.
2．Learn VGA interface timing control.
3．Write a program to control the monitor.

2.2.2 Experiment theory

This experiment requires using verilogHDL to write an outputting program
which can control the VGA port on the experiment board. Control the monitor
through experiment board to display the color in the finished programs. To
guarantee the monitor working normally, you need to know the structure of
VGA port firstly, then, the CRT monitor working principles and the timing
relationship of VGA port outputting signals. .
1．VGA port structure:

VGA port is the video output port. It includes 15 pins as following:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 23

In common connection ways, there are 5 most important pins in 15. They
include 3 basic color lines red, green, blue and two control lines (level and
vertical). We can display 8 different colors in the screen as following:

red green blue Display color
0 0 0 Black
0 0 1 Green
0 1 0 Blue
0 1 1 Blue green
1 0 0 Red
1 0 1 Magenta
1 1 0 Yellow
1 1 1 White

On the development board, each basic color line (red, green and blue) is
controlled by three input lines. These three control lines have different
resistances. Under these three input lines controlling, the three basic colors
(red, green and blue) are divided into 8 levels separately. Theoretically, the
VGA interface on the development board has 9 color control lines in total which
can display 512 different colors.
2． CRT monitors working theory:

Inside of the monitor, the current flows through the coil and generates the
magnetic field. In this way, it control electron beam flow the monitor surface,
from left to right in level and from up to low in vertical. Following picture is an
example of level direction. Only in the positive direction flow (left to right, up to
low), the monitor works. When the electron returns to monitor’s left or up, the
monitor doesn’t work.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 24

3、VGA driver program’s FPGA achievement:

Driver program mainly finishes the following tasks: generate the synchronize
signal (line, row) according to the VGA timing requirement, and output the data
of color to be displayed in specified time (pixels valid period) to RGB.

In different displaying modes and refresh frequencies, detailed synchronize
signals (front, behind, synchronization signal) has different valid pixels. You
have to set according to pixels clock frequency. Like upper table:以800*600，
60HZ, pixel clock is 40M, pixel clock =（800+40+128+88）*（600+1+4+23）
*60=40MHZ. In designing, you can choose suitable display mode according to
system clock frequency.

2.2.3 Experiment content

This experiment mainly has two parts: one is displaying color lines
required by experiment in the monitor VGA which is simple. Another is to
simulate a Ping-Pong game in VGA monitor. Use keys on development board
SW1, SW2, SW3, SW4 to control rackets and jumper SW6 to control balling
status.

The most important thing in programming to control VGA is to learn the
timing and working mode of VGA interface. The first experiment is to show
some color belts on the monitor. Therefore, giving the different RGB value
(different currents) according to different areas of the data in scanned
registers’ when the monitor is scan-displaying will be ok. For example, we
have to show a vertical red belt in the left most of them monitor. As the monitor
is progressive scan, we can judge whether the data value in the register is less
than a fix value. Set R be 1 and GB be 0 when meet requirement, or all is set 0.

Ping-Pong program is more complex. You can program a VGA controller
first. And display the table, rackets and ball by controlling this VGA controller.
At last, write the programs of balling and score recording

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 25

2.2.4 Experiment steps

1．Set up a new project.
2．Set up source file and programming
3．Integrate, layout, and route;
4．Download and debug.

2.2.5 Experiment result

1. You can see the color belts in the monitor according to the experiment
requirements.

2. You can play Ping-Pong game on the monitor.

Experiment10 Serial communication
experiment

2.3.1 Experiment purpose

1．Learn RS232 interface agreement;
2．Program to achieve the communication between serial and PC.

2.3.2 Experiment theory

1、Serial description：
RS-232-C standard is initially the remote communication connection data

terminal equipment (DTE) and data communication equipment (DCE) to
customize. Therefore, this standard’s set up doesn’t consider the application
requirements of the computer system. However, now days, it is widely used as
the connection standard between the computer (computer interface) and
terminal or peripheral proximal. Obviously, some rules of this standard are
different from computer systems, and some are conflicts. With the knowledge
of this background, it is easy for us to understand the not compatible place
between RS-232C and the computer.

Second, the “send” and “receive” mentioned in RS-232C standard, are
defined at the position of DTE instand of the DCE. As in the computer system,
messages sent between both of the CUP and I/O device is based on the DTE,
both parties can send and receive.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 26

The full name of RS-232C standard（agreement）is standard EIA-RS-232C .
Here, EIA is stand for Electronic Industry Association, RS is stand for
recommended standard, 232 is ID number, C stands for the latest adjustment
of RS232 （1969）.
2、Serial electrical standard：

RS232 uses negative logic instand of TTL level interface standard. That is
when the logic is "1" the range is -3 V～-15 V；the logic is "0" the range is +3
V～+15 V；EIA-RS-232C defines to the electrical features, logic level and all
kinds of signal line features:

On TxD and Red：logic 1(MARK)=-3V～-15V; logic 0(SPACE)=+3～＋

15V；
On the control lines as RTS、CTS、DSR、DTR and DCD: signal valid

(connected, ON, positive voltage) ＝+3V～+15V; signal invalid (disconnected,
OFF, negative voltage))=-3V～-15V

EIA-RS-232C which is different from TTL (uses high / low level to show
the different logic status) uses positive / negative level to show the logic status.
Therefore, to connect to the computer interface or TTL devices, you have to
change the level and logic between EIA-RS-232C and TTL circuit. To achieve
this, you can use discrete components as well as IC. Here, what we use is
MAX3232 changes the signal sent/received by the interface to TTL level.
3、 Serial communication agreement:

“Serial communication” means using one signal line between peripherals
and the computer (more control line needs if grand line asked). Data are
transformed in one signal line bit by bit. Each bit gets one fixed time period.
As following picture shows:

This communication way uses fewer data lines which can save the cost in

long distance communications. Of course, the speed is lower than parallel
way.

The transform between CPU（FPGA is equal to one CPU）and interface is
parallel way, and be serial way between peripheral and interface. Therefore, in
serial interface, there must be “receiving displacement register” (serial-parallel)
and “sending displacement register” (parallel – serial)

During the data inputting, data enter interface’s “receiving displacement
register” bit by bit from peripheral. When “receiving displacement register” has
finished the receiving bits of 1 character, the data enter “data inputting register”
from “receiving displacement register”. CPU reads the received symbols from
“data inputting register”. (Parallel reading, D7~D0 are read to accumulator at
the same time). The speed of “receiving displacement register” is decided by
“receiving clock”.

During data output, CPU send the symbols to be output (parallel) to “data

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 27

outputting register”, the content of “data outputting register” to “sending
displacement register”. And then, the “sending displacement register” sends
the data to peripheral bit by bit. The speed of “sending displacement register”
is decided by “sending clock”. The “controlling register” in interfaces is used to
accommodate all controlling message sent to the interface by CPU. These
messages decided the working mode of the interface.

The circuit which can finish “serial-parallel” exchanging as described before
is called “common asynchronous receiver transmitter”（UART：Universal
Asynchronous Receiver and Transmitter）. It includes doubt buffer data
sending register, Parallel-serial changing equipment, double buffer data
inputting register, Serial-parallel chaning equipment.
RS232 communication agreement’s basic structure
Start bit is low and stop bit is high.

Baud rate is 300~115200 bit/s，8bit data bit, one or two bits stop bit, odd parity,
even parity or no parity bit.

2.3.3 Experiment content

This experiment needs serial debugging software, Baud rate is 9600,
sending/receiving data.

2.3.4 Experiment steps

1．Set up a new project.
2．Set up source file and programming
3．Integrate, layout, and route;
4．Download and debug.
5. Use serial line to connect PC and development board, open the serial

debugging software and the Baud rate is set 9600.

2.3.5 Experiment result

Achieve receiving / sending data by the serial debugging tools. For example:
send 45, and receive 45

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 28

Experiment11 PS2 interface control and
display experiment

2.4.1Experiment purpose
1．Learn PS2 interface agreement.
2．Learn the keyboard working theory.
3．Write program on the development board to achieve read the keyboard

inputting message through interface PS2.

2.4.2 Experiment theory

This experiment is to write a program which can achieve PS /2 port
features. PS/2 keyboard fulfills Two-way synchronization serial agreement, In
other words, each time of send one bit data in data line and pulse in clock line,
it can be read. Keyboard can send data to host. Host also can send data to
devices. But the host always has priority in general lines. It can inhabit the
communication from keyboard at any time if the clock is down. This experiment
mainly is to achieve the data transmission from keyboard to the host. First of
all, we have to know the PS/2’s structure and pins features.

Plug Socket Pin

1—data
2—not achieve, reserve
3—porwer ground
4—power，+5V

 5—clock
Plug Socket 6—not achieve, reserve

There is only one data port in upper table. To distinguish many keys, one
high-efficiency distinguish way is needed. Keyboard processor spends a lot of
time to scan or monitoring keyboard matrix.If it finds some keys are pressed
released or hold the keyboard, it will send message pack of scan codes to the
computer. There are 2 kids of scan code: “pass code” and “breaking code”.
When one key is pressed or hold, it will send “pass code”; when one key is
released, it will send “breaking code”. Each key is distributed the only “pass
code” and “breaking code”. In this way, the host knows the exact key by
searching the only scan code. The “pass code” and “breaking code” of each
key composite the scan code set. Following pictures includes the scan codes
of most keys on the keyboard:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 29

When the key is released, the keyboard will put “F0” in front of the scan

code as the release signal. At the same time, some keys are extended keys.
Put “E0” in front of their scan codes as beginning. When this kind of key is
released, it will append “E0F0” to the scan code.

Let us know how signal inputs through keyboard by PS/2 port’s data line.
First, the keyboard will check whether data line and clock line are high. Only
both of them are high, you can write data. The data send from keyboard to host
can be read at the clock signal’s falling (clock changes from high to low).

Keyboard mainly uses the serial agreement that each frame has 11bits:the
first bit is start, be “0” forever; following 8 bits are data bits, lined from low to
high; following is odd/even parity bit; last is ending bit, be “1” forever.

2.4.3 Experiment content

This experiment achieves the controlling of keyboard, LCD, RS232 and etc
by programming the development board. Display the keyboard input data on
the LCD, or the PC super terminal by RS232.

2.4.4Experiment result

Display the input characters on LCD.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 30

Experiment12 USB interface read/write
control experiment

2.5.1 Experiment purpose

1．Learn USB interface working theory.
2．Master CY7C68013 working timing.
3．Write the program to control the USB on the development board to

read/write data.

2.5.2 Experiment theory

EZ－USB FX2 from Cypress Semiconductor is the first microprocessor
integrated USB2.0. It integrates USB2.0 transceiver, SIE (serial interface
engine), enhanced 8051 microcontroller and programmable peripheral
interface. This original structure of FX2 permits the transmit rate to reach
56Mbytes/s that is the maximum belt width of USB2.0. In FX2, the intelligent
SIE can hard process many USB1.1 and USB2.0 agreements to reduce the
developing time and guarantee the USB’s compatibility. GPIF（General
Programmable Interface） and main/minor ports FIFO (8 bits and 16 bits data
general line) provide simple and seamless connection interfaces to ATA、
UTOPIA、EPP、PCMCIA and DSP.

CY7C68013 integrates following features:
● USB2.0 transceiver, SIE (serial interface engine), and enhanced 8051

microprocessor.
● Software running: 8051 starts from internal RAM, and can with the help

of following ways to load programs:
（1） download through USB;
（2） load from EEPROM;
（3） through external storage device.
● Four programmable BULK/INTERRUPT/ISOCHRONOUS ports;

You can choose two, three or four buffer.
● 8 bits or 16 bits external data interface.
● through programmable interface （GPIF）
（1） connect to parallel port directly, 8 and 16 bits.
（2） programmable waveform descriptors and configuration register.
（3） support several Ready input and Control output

● integrate standard 8051 core and has following enhanced features:
（1） can reach 48MHz clock.
（2） each command gets four clock circle;

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 31

（3） two USARTs；
（4） three timers/ counters;
（5） expanded interrupt system.
（6） tow data pointer.
● 3.3V power system;
● intelligent serial engine（SIE）；
● Vector USB interrupt
● Independent data buffer for SETUP and DATA pack control transmit.
● integrates I2C controller, running speed can reach 100 or 400KHz；
● Four FIFO，can connect to SIC, DSP and ect seamlessly.
● Professional FIFO and GPIF auto vector interrupt.
● Can be used in DSL Modems、ATA interface、camera、Home PNA、WLAN、

MP3 player, internet and ect.
USB starting way and enumerate:

When powered, the internal logic will check the first character (0xC0 or
0Xc2) of the EEPROM which connected to the I2C general line. If it is 0xC0,
it will use VID/PID/DID in EEPROM to instand internal storage value. If it is
0xC2，the internal logic will load the content of EEPROM to internal RAM. If
not find EEPROM, FX2 will use internal storage’s descriptor to describe the
enumerator. FX2 default VID/PID/DID is 0x04B4/ 0x8613/0xxxyy.

When the first time insert the USB, FX2 will enumerate and download
firmware and USB descriptor list by USB cable automatically. Then, the FX2
will enumerate again. This time, it mainly makes the definition of the device by
download information. These two steps are called re-enumeration. Once the
device is inserted, it works.
Program / data memory
● Internal data RAM

The internal data RAM of FX2 are divided into three different areas: LOW
128、Upper 128 special feature register(SFR) room. Low 128 and upper 125
are common RAM while SFR includes FX2 controlling and status register.
●External program memory and data memory.

FX2 has 8K chip RAM which locates in 0x0000－0x1FFF；512 bytes
Scratch RAM which locates in 0xE000－0xE1FF. Though physically, Scratch
RAM locates in the chip, it can be found as the external RAM by firmware.
FX2 keeps data address space 7.5K（0xE200－0xFFFF as controlling /
status register and port buffer.

Note: only data memory space is kept, program memory （0xE000－0xFFFF）
isn’t. Port buffer FX2 includes 3 64 bytes port buffers and 4K space which can
be configured to different ways buffers. 3 64 bytes buffer is EP0、EP1IN and
EP1OUT。EP0 is used as controlling port which is two-way port and can be IN
or OUT. When it needs to control transit data, FX2 firmware read / write buffer
EP0. But 8 SETUP byte data won’t appear in the 64 bytes EP0 port buffer.
EP1IN and EP1OUT use the independent 64 byte buffer. FX2 firmware can
configurate these ports to be BULK、INTERRUPT and ISOCHRONOUS

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 32

transmission way. These 2 ports only can be visited by firmware just like
EP0.It is different from big port buffer EP2、EP4、EP6 and EP8. These four
port buffers are mainly used to do the data transmission to chip or out-chip
which doesn’t need the firmware’s participation. EP2、EP4、EP6 and EP8 are
high belt width, big buffers. They can be configurated in different ways to
meet the belt width needs.

External interface FIFO
Big port buffers (EP2、EP4、EP6 and EP8) are mainly used to do the

high-speed (480Mbits/s) data transmission. It can set up the high speed data
transmission by the seamless connection between FIFO data interface and
external ASIC and DSP processers. It has common interface: Slave
(subordinate), FIFO (external main) or GPIF (internal main), synchronous /
asynchronous clock, internal or external clock and etc.

Interrupt source:
FX2 interrupt structure enhances and expands part of the interrupt source

based on the standard 8051 MCU. Following table shows the interrupt
source:

FX2 interrupt Interrupt source Interrupt vector Priority
IE0 INT0 Pin 0x0003 1
TF0 Timer0 Overflow 0x000B 2
IE1 INT1 Pin 0x0013 3
TF1 Timer1 Overflow 0x001B 4

RI_0 & TI_0 USART0 Rx & Tx 0x0023 5
TF2 Timer2 Overflow 0x002B 6

Resume WAKEUP/WU2 Pin 0x0033 0
RI_1 & TI_1 USART1 Rx & Tx 0x003B 7

USBINT USB 0x0043 8
I2CINT I2C BUS 0x004B 9

IE4
GPIF/FIFOs/INT4

Pin 0x0053 10

IE5 INT5 Pin 0x005B 11
IE6 INT6 Pin 0x0063 12

Among them, 27 USB applicator share USB interrupt and 14 FIFO / GPIF
source share INT4.
Detailed chip introduction and using description see the chip user manual.

2.5.3 Experiment content

This experiment is to set up the data transmit between FPGA and PC by
USB interface which includes data reading and data writing. Testing way see
the testing file.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 33

2.5.4 Experiment steps

All experiments below are based on default user has installed the

development pack EZ-USB. If the user hasn’t done this, please install the

EZ-USB provided in the disk and install Keil to write firmware program.

And, these two samples will use VC++6.0(or VC.NET). User has to confirm

the VC has been installed already.

 BULK data transmission experiment:

Experiment steps are as following:

1、first of all, connect the development board to PC by USB line.

2、open /Cypress/EZ-USB Control Panel

 You will see following window:

As the upper picture, the USB has been connected to PC. If following

dialog comes out:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 34

Means there is no connection. Please check whether the USB line has

been inserted and the development board is powered.

1、Click download and find

The file Bulk_Loop_Test.hex in s12_usb\Bulk transmission test \Keil

firmware project\Bulk_Loop_Test\. Click download. When the

download is finished, you can hear the “ding” of the USB

disconnecting firstly.

4、When the download is finished, open

The VC project in s12_usb\Bulkt transmission test \VC project \bulkloop.

Running interface is as following:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 35

Set Out Pipe：2，In Pipe：6，First Pair，Start Value/Speed is 0，incrementing

Byte ， Transfer Size is 512,as following

Click start and the result comes:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 36

You can see, the program stores the sending data and receiving date into

two files. Open these two files and see the corporations:

Data are completely the same. You can also choose random bytes that are

Random Byte. Results are as following:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 37

Compare two files as following:

The result shows firmware program and VC program designing are

correct. They can finish BULK transmission accurately. User can adjust

them on the actual needs.用

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 38

 Slave_FIFO mode data transmission experiment

Steps are as following：

1、Open ISE project;

The project files s12_usb.ise in s12_usb\SlaveFIFO mode data

transmission test \ISE project\3s1000_slavefifo

Download top_salve_fifo_wr.bit file to FPGA

2、Open Cypress\Control Panel, and download

s12_usb\SlaveFIFO mode data transmission test \Keil firmware

project\Slave_FIFO_rd_wr\Slave_FIFO_rd_wr.hexfile

3、Open VC project:

In s12_usb\SlaveFIFO mode data transmission test \VC.NET project

\ibis_usb, the interface is as following :

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 39

Click process\read FIFO and get following result:

You can see the gradient stripes which prove the write timing of FPGA

program design is correct. And you can see the read time in the title bar.

This program can achieve lasting reading. Each time of read an image,

the lights on development board are on/off alternately.
Here, only provide a very simple sample for user to study and using. User can
do the adjustment on this base according to the actual needs.

2.5.5 Experiment result

Achieve the USB communication between FPGA and PC. And check the

communication correctness on the PC. The details of EZ-USB are in the

certain files in the provided project folder.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 40

Experiment 13 SRAM read/write control
experiment

3.1.1 Experiment purpose

1．Learn SRAM memory structure
2．Handle SRAM memory read/write timing;
3．Write a program to control the SRAM read / write

3.1.2 Experiment theory

The SRAM chip used on the development board is IDT71V416S,
The external package and internal structure are as following:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 41

SRAM is the easier reading /writing controlled way in all memory kinds

which means its reading / writing timing is easier. Details are as following:
（1） Read timing：

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 42

● When do the reading, you have to set the signal #WE high.
● The address of the data to be read has to be gave following the signal #CE

falling at the same time or prior to it.
● After gave the address and read controlling signal, it can read the data after

period of time (normally is reading at the next clock cycle’s raising)
（2） Write timing:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 43

● During writing, signal #OE can be high or low which will not effect on the
operation.
● Writing operation has to give the data and address to be wrote at the signal
#WE ‘s rising. Write into SRAM in next clock circle.

● In the written status , at least one is generated at low level.

3.1.3 Experiment content

This Experiment is to control the SRAM on the development board to read
the data from specified address and write the data to the specified address.
And compare whether the read data is the same as the write one. If they are
the same, means SRAM read/write successfully.

3.1.4 Experiment steps

1．Setup project.
2．Add source file.
3．Integrate, layout, and route;
4．Download and debug.

3.1.5 Experiment result

Read data and write data are the same. The error indicator light on the
development board is off.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 44

Experiment14 SDRAM read/write
control experiment

3.2.1 Experiment purpose

1．Know the internal structure of SDRAM.
2．Handle SDRAM working principle and reading and writing timing
3．Program SDRAM controller.

3.2.2 Experiment theory

In the high speed real time or none real time signal processing system, using
large storage to achieve data cache is a necessary part which is also the
importance and difficulty in the whole system achieving. SDRAM has
advantages such as low price, high precision and high speed of reading and
writing. It is the first choice for the data cache. However, the structure of
SDRAM is quite different from SRAM’s. Its timing controlling is more complex
which limit the using range of it.

Following is the internal structure of SDRAM:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 45

SDRAM devices’ pins are separated into three parts: controlling signal, address

and data. Following are the detailed definitions:
SDRAM(×16) Pin Assignment

Usually one SDRAM includes several BANK，Each BANK’s storage unit is

addressing by line and row. Because of this special storage structure, SDRAM
has following working features:

● SDRAM’s initialization---after SDRAM is powered by 100～200μs, there

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 46

must be one initialization process to configure SDRAM ‘s mode register. Mode
register’s value decides the working mode of SDRAM.

● visit storage unit --- To minus I/O pins，SDRAM reuses address line.
Therefore, when read/write SDRAM, use ACTIVE to active BANK to be read/wrote
firstly and latch line address. Second, when the read/write command is valid, latch
row address. Once BANK is active, only after finish the pre-charge command, you
can reactive the same BANK.

● refresh and pre-charge--- To improve the storage density, SDRAM uses
silicon capacitor to store data. Capacitor always tends to discharge. Therefore,
there must be regular refresh cycle to avoid data missing. Refresh cycle can be
got by Min refresh cycle / clock cycle. Pre-charge the BANK or close the active
BANK can pre-charge the special BANK and also can effect on all BANK，A10、
BA0 and BA1 which used to choose BANK。

● Operation control --- SDRAM’s detailed controlling commands finishing are
assisted by some specified controlling pins and address lines. CS、RAS、CAS
and WR in the clock rising statues decide the detailed operation action. In some
operation actions, address line and BANK choosing control line are input as
assistant specifications. Because of the special storage structure, SDRAM has
more operation commands which are different from SRAM that has simple
read/write. Detailed operation commands are as following:

SDRAM Command Truth Table

In storage family, SDRAM is a special one. It has large storage, high speed,

however, at the same time it has difficulty in storage operation. There are two
solutions. One is to control SDRAM’s read/ write timing directly to achieve the
data’s storage and read. One is to program a SDRAM controller. Simplify the

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 47

SDRAM’s read/write to SRAM form. Finish the SDRAM read/write by some
commands. This experiment is to finish the SDRAM read/write on the
Modelsim development board by both of two ways.

No matter which way to be used, you have to know the read/write timing of
SDRAM:
A． Initialize and write register.

B． Refresh automatically

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 48

C． Burst mode read.

D． Burst mode write.

E． Whole page read

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 49

F． Whole page write

Upper is the timing pictures of SDRAM achieving each operation. Connect

them and you can achieve the SDRAM’s initialization and read/write.
Detailed SDRAM controlling order can be described by following picture:上

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 50

Here, recommends one SDRAM controller overall design diagram and

outside interface signals:

SDRAM controller and external interface schematic diagram is as upper.

Signals of the controller’s right port are all connected to SDRAM corresponding
pins. Do not introduce here. Signals of controller’s left port are system
controlling port signals connected to FPGA. Among them, CLK is system clock
signal, ADDR is the SDRAM address signal gave by system, DATAIN is the
data signal used by the system to write into SDRAM, DATAOUT the data
signal used by the system to read from SDRAM, CMD [1:0] and CMDACK are
system and controller commands interactive signal, and M is data Mask signal.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 51

As upper diagram shows, SDRAM controller includes system controlling

interface module, CMD command resolve and responds module and data
access module. System controlling interface module is used to receive system
controlling signals and generates different CMD command combination. CMD
command resolve module is used to receive CMD commands and resolve
codes to operation commands, and generate SDRAM operation. Data access
module is used to control data’s valid input/output. Following are feature
details of each module:
(1) System control interface module:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 52

This module includes initialization mechanism and system commands

analysis mechanism. Initialization mechanism not only has to finish SDRAM’s
initial configuration, but also do the initial configuration of the controller which
keeps the control and the external SDRAM in the same working mode. Here
are the processes. The system controlled by the counter is powered to around
200μs. Do SDRAM’s initial configuration firstly. One Precharge all bank
command finishes all BANK’s pre-charge. Then, follow several Refresh
commands. Then is mode configuration command LOAD_MODE. Finish the
SDRAM woke mode setting. After that, do the controller’s initial configuration
job. Firstly, send out command LOAD_REG1 to controller loading mode. Then,
send out LOAD_REG2 command to load controller’s refresh counter value.
Complete the controller’s initial configuration.

After upper processes, system command analysis mechanism can
receiveand analysis system’s read/write signal, address and CMDACK signal
feedback from the next module. It also generates corresponding CMD
command and SADDR address information to CMD command analysis
module. Through program setting, achieves determining when read/write
Precharge or Refresh CMD command sent out at the certain moment
according to the specifications of initial configuration which simplify the
system’s controlling. Each time when receive CMDACK is 1, means CMD
command has been sent and be valid. And have to send out NOP command

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 53

(CMD=000)。Attention that, SADDR is time-sharing reused. When initialize
load mode, SADDR is used to transform the mode character content defined
by user. However, in normal read/write period, SADDR is used as address
transform to transit line, row and block address asked by SDRAM. More,
system analysis mechanism will feedback SDRAM_FREE and
FDATA_ENABLE to system user according to the status of the controller‘s
operation of SDRAM.

Detailed CMD commands descriptions are as following:

(2) CMD command resolve responds module:

This module judges the CMD command and the result is outputting

corresponding operation command signal to command response module. For
example, when CMD is 001, it will output do_read signal be 1; and when CMD
is 010, it will output do_write signal be 1. At the same moment, only one valid
operation command can be output.

Besides, this module includes the mode register which can be used to
precharge some certain mode specifications. Mainly, there are three types:
First is the SDRAM mode controlling register. In the command LOAD_MODE ,
send this register into SDRAM mode register to control SDRAM’s working
mode. The second is SDRAM controller’s specification register (LOAD_REG1)
which makes the SDRAM controller’s working mode match the external

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 54

SDRAM devices’ working mode. The third is SDRAM refresh cycle controller
register. This register precharge the auto-refresh counter value defined by
user which is used for the precharge of SDRAM’s refresh cycle. The precharge
value of three types register above is sent by SADDR when the system
controlling interface module is initializing. According to the operation command
from CMD command analysis module, this module make the action which
meets SDRAM read/write specifications to achieve user’s expectations. It
gives data choosing signal OE to control data path module (in writing, OE is 1,
while in reading OE is 0). Besides, this module processes system non-reuse
address ADDR to reuse address SDRAM and sends to SA, BA time-sharingly.
In the program, actually, CMD commands of WRITEA and READA imply
command ACTIVE. Therefore, when the module receives command do_write
or do_read, it will do activation firstly. And then does read or write after CAS
delay required by initial configuration. For example, during the initialization,
mode requires CAS＝2，BURST LENGTH=PAGE，and after receives
do_write=1 from command interface module, it will do activation and gives line
address (sends RAS_N=0，CAS_N=1，WE_N=1，SA=raddr). After 2 clock
delay, it does write and gives row address (sends RAS_N=1，CAS_N=0，
WE_N=0，SA=caddr)。

Besides, after receives each kind of operation commands, this module will
responds to CMD command analysis module and cmdack signal is 1. Finally,
the responds will be sent to system controlling interface module’s CMDACK
and signal is 1. If there is no operation command, cmdack=0，CMDACK
signal is 0。

 (3) Data path module

This module accepts OE signal’s controlling and makes synchronization of

data in/out and corresponding operation command. When OE is 1, data can
be written to SDRAM by DQ pin. When OE is 0, data can be read from DQ
pin of SDRAM.

3.2.3 Experiment content

1．Design to program a SDRAM controller and check it’s availability on the

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 55

simulation platform ModelSim
2．Write programs to control SDRAM read/write on development board.

3.3.4 Experiment steps

1．ModelSim simulation part
（1） open ModelSim

（2） set up a new project and add source file or file wrote by user.

choose “File New Project…”

Fill project’s name and address in upper dialog. OK.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 56

If you want to set up new file, choose Create New File. If you want to add

the exits file, choose Add Existing File. Add or write source file, and you can
see they are displayed in Workspace:

（3） Compile

Right click on any source file, choose “Compile”

ModelSim will program all files automatically. All mistakes found by it will

be list in following dialogue. Here, double click mistake, and ModelSim will
open the file which includes it automatically and finds the location of the
mistake. If the programming passes, the blue question mark near source file
will change to green checkmark.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 57

（4） Simulate

Choose check page Library in Workspace. Click the plus mark on the left
of Work. In the pop-up submenu, find simulation module. Double click or right
click to choose Simulate and ModelSim will run simulation automatically.

（5） watch waveform
Choose Sims check page in Workspace:

Right click top testing module and choose “Add Add to Wave”.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 58

ModelSim will open a waveform simulation interface automatically and

add all registers and interfaces of top testing module:

Back to ModelSim的 interface, and type “run 20us”in command input

window.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 59

Few seconds after “Enter”, you can see the simulation result as following:

2．Development board testing part

（1） set up a new project.
（2） add source files
（3） integrated, pin defined, and route
（4） download and debugging

3.2.5 Experiment result

LED shinning on the development board means SDRAM’s read dates and
writing dates are the same. Working properly.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 60

Experiment15 FLASH read/write control
experiment

3.3.1 Experiment purpose

1. Learn the structure and working principle of Flash memory.
2. Master NOR Flash’s sequence of reading and writing.
3. Program to control the Flash’s reading and writing on development

board.

3.3.2 Experiment theory

1、Brief introduction of FLSH
In 1988, Intel first developed the NOR Flash technology, which broke the

monopoly of EPROM and EEPROM. And during the next year 1989, Toshiba
published the structure of NAND Flash, highlighting lower cost per bit and
higher performance, and it can upgrade easily through interface as a disc.

NOR is characterized by its (XIP eXecute In Place), with which the
application program can operate in Flash memory directly, rather than read the
code into system RAM. With high transmission efficiency, NOR brings high
cost benefit in small capacity of 1-4MB. But the low writing and erasing speed
greatly affects its performance. NAND structure can provide ultra high cell
density; achieve high storage density, and high writing and erasing speed. The
difficulty of applying NAND lies in the flash management, and the need of
special system interface.

The Am29lv320DB on development board is a NOR Flash memory; it has

the following features:
1、 Small size, great capacity; can reach more than 10MB now.
2、 Save the data when power off; the data can be kept for 10-100

years.
3、 With separate address and data bus, it can read the data quickly

through bus, so it has the same reading speed as static RAM, and can
be used not only as data storage, but also program storage.

4、 Write operation has to be completed in Bytes or words through
instruction sequence, each Byte or word needs more than 10μs.

5、 Erasure also has to be operated in blocks through instruction
sequence; the usual weight of one block is 64K; the erasure of each
block needs more than 10ms.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 61

Internal structure of Flash:

Pin functions table：

The read operation of Flash doesn’t need to write control word; with only

address can it output the data. While the write operation is relatively
complicated; you have to write control word first, and the details are as follows:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 62

Detailed time specifications see chip manual.

2、Specific examples:

Here we will verify FPGA’s controlling of Flash reading and writing through
achieving a simple function. The detailed process is as following: after system
is powered and reset, through commands, do erase operation to the whole
FLASH. Then, write data into FLASH by writing commands. And read the
data wrote into the FALSH by reading commands. If the data written in keeps
the same as read out one, the light on the development board will be on.

Simulation result:
1）、Erase operation corresponds to the Chip Erase order in the chart. Timing
requirements:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 63

There are two kinds of erase operations: Sector erase and Chip erase; we

adopt chip erase here. It should be noticed that data is latched to the
corresponding address during the rising edge of WE.
Simulation result:

As is shown in the table, address corresponds to Addr in the chart, and

data refers to DATA. According to the table, put the data into the
corresponding place. Pay attention to that the data must be stable when the
rising edge comes on WE.
2）、Write operation. Corresponding to the Programmed operation in the upper
table, FLASH itself has status machine to the FLASH controlling. It will confirm
the change of status machine according to the operation code given by user
and achieve related operation. In default situation, after system is powered and
reset, FLASH is in the status that can read data. Therefore, without any
command, you still can read data from FLASH. Only give the FLASH address
will be ok. To other operations, you have to give the related operation code.
Following is the write operation (Program) simulation result:

As is shown in the figure, the first three addresses and data is the

operation code; the last one is data to write and the corresponding address.
Every time the data is written, the state machine of Flash will skip to the state
of data access, and we can read the data directly at this time. If there is other

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 64

data to write, we have to resend the operation code.
3）、Read operation corresponds to READ in the above figure.

Read operation on Flash is very convenient; the address of data to read is
the only thing needed. Timing requirements are as follows:

Simulation result:

The figure shows: address is the address of read; the simulation imitates

that after sending OE signal, there will be a period of time before the output
comes out, and the next data will be written in after the previous one is read
out.

3.3.3 Experiment content

This experiment is to control the reading and writing of Flash through
Verilog, and verify if the read data is the same as write data on development
board.

3.3.4 Experiment result

On the development board, the corresponding LED turns on means
FLASH works normally.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 65

Experiment16 Data flow control
experiment

4.1.1 Experiment purpose

1．Know basic idea of data flow.
2．Know the basic theory of data flow controlling which includes popline,

serial/parallel, FIFO, Ping-Pong read/write.
3．Handel the achieving way of each data flow processing way.

4.1.2 Experiment theory

Data flow controlling is the difficult often met in data signal processing. In
designing, designed speed is not enough or the resources used in designing
is over the maximum content of FPGA will effect on the designed cycle. This
is the problem in the relation of speed and area we often mentioned. To solve
it, we need useful way to control the data flow. Here we introduce four ways:
popline, serial/parallel, FIFO and Ping-Pong read/write. Their features and
using ways are as following:
（1） popline

Popline processing is a useful way in high speed designing. If the designed
processer flow is separated to some steps and the whole data processing is
“single flow” which means no feedback or interaction and the output of
previous is the input of the next, we can consider using popline designing way
to improve the system working frequency.

The popline design structure diagram is in diagram 3. The basic structure is:
connect n operation steps which are suitable separated in series. The most
important feature and request of popline operation is that each step of data
flow is continuous from time. Suppose each step is passing a D trigger (means
use register to hit a beat), the popline operation is similar to a shift register.
Data get through the D register in turn and finish each step’s operation.

The key of popline design is the reasonable arrangement of the whole
design timing. It asks the reasonable separation of each operation step. If the
previous operation time equals to the next one, the design will be the simplest.
The previous output directly imports to ten next inputs. If the previous
operation time is longer than the next one’s, you need to do the certain buffer
of the previous output data and then import to the next inputs. If the previous
output time is shorter than the next step’s operation time, you have to copy
the logic to divide the flow, or in the previous step use store, after-treaterment.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 66

Or the next step data will be overflow.
The popline processing way is often used in WCDMA designing like RAKE,

receiver, searcher, leading to capture and etc. The reason why popline
processing has high frequency, is that it copies processing module. It is a
concrete embodiment of the thought area for speed.

There are many ways of popline achieving. The most direct way is to use
many always blocks in one module. Each always stands for one step of the
whole program. In this way, when the trigger edge comes, each always blocks
do one operation. And these steps compose a simple popline. Details see the
following program:
module pipeline(cout,sum,ina,inb,cin,clk);
output[7:0] sum;
output cout;
input[7:0] ina,inb;
input cin,clk;
reg[7:0] tempa,tempb,sum;
reg tempci,firstco,secondco,thirdco,cout;
reg[1:0] firsts,thirda,thirdb;
reg[3:0] seconda,secondb,seconds;
reg[5:0] firsta,firstb,thirds;
always @(posedge clk)
begin
tempa=ina; tempb=inb; tempci=cin; //input data buffer
end
always @(posedge clk)
begin
{firstco,firsts}=tempa[1:0]+tempb[1:0]+tempci;
//first level add (low 2 bytes)
firsta=tempa[7:2]; //data buffer which have participated in caculate
firstb=tempb[7:2];
end
always @(posedge clk)
begin
{secondco,seconds}={firsta[1:0]+firstb[1:0]+firstco,firsts};
//second level add (add 2 to 3 bit)
seconda=firsta[5:2]; //data buffer
secondb=firstb[5:2];
end
always @(posedge clk)
begin
{thirdco,thirds}={seconda[1:0]+secondb[1:0]+secondco,seconds};
//third level add(add 4 to 5 bit)
thirda=seconda[3:2]; //data buffer
thirdb=secondb[3:2];

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 67

end
always @(posedge clk)
begin
{cout,sum}={thirda[1:0]+thirdb[1:0]+thirdco,thirds};
//forth level add(two higher bits add)
end
endmodule

Example:

Here we give an example that use detailed application popline to design the
adder. It is to achieve the additon of 8 symbol numbers. It uses three-level
popline to calculate the addition of 8 9-bit numbers with symbols. The input of
each level needs to be expanded first. For example, to the first level popline,
data_reg1[0] is the result of data_in0 after is bit expanded:. data_reg1[0] =
{data_in0[8],data_in0}. After three-level popline, you can get the final result
（2） serial/parallel, parallel/serial exchange.

Parallel communication: data are transferred in several parallel channels
in groups at the same time. For example, several binary bits which compose 1
character codes are transferred in several parallel lines separately. Each bit
uses separate line. Parallel communication is very normal especial in two
devices which are close to each other. The most common example is the
communication between PC and external device, like print cable. Other
examples include the communication between CPU, memory and device
controller. There is no advantage when the parallel communication is used in
long distance connection. First, using several lines in long distance is more
expansive than using one. Another problem is about the demand time of bit
transform. When the distance is short, bits sent in multi-channel can be
received almost in the same time. However, in the long distance, resistances
in wire obstruct the transform more or less. Therefore, the bits cannot reach in
the same time which brings troubles to the receiving port.

Serial communication: data flow is transferred in one channel by the serial
way which means transfer all bits one by one in one line. This way brings
additional complexity to sending device and receiving device. The sending way
must clear the sending order. For example, when send 8 bits of one character,
sending part has to decide which one to be sent first, the high bit or the low one.
In the same way, the receiver has to know where to put the first bit in the
received purpose byte. If two parties of serial communication can no keep the
same in bits order; there will be error in data transmission. 。

As the sending and receiving part only need one transfer channel in serial
communication, it is cheaper and easier to achieve, and in long distance
connection, it is more realizable, it is the widely using way now a days.
However, it sends one bit each time, so the speed is slower.

Serial/parallel exchange is an important skill in FPGA design. It is the often
used way in data flow processing. It also reflects the idea of the exchange

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 68

between area and speed directly. There are many ways of achieve the
serial/parallel exchange. According to the data order and quantity, you can use
register, RAM and ect. to achieve. In the Ping-Pong operation diagram before,
it used DPRAM to achieve the serial/parallel exchange of data flow. And as
used DPRAM, the data buffer can be opened larger. To the lower quantity
design, you can use the register. If there are no special requirements, you
need to use synchronization timing design to achieve the serial/parallel
exchange. For example, in the exchange Serial to Parallel, the high bit is in the
front and can be achieved by the following program:

prl_temp<={prl_temp,srl_in};
Here, prl_temp is the parallel output buffer register, and srl_in is serial data

input.
To the serial/parallel exchange has the special order; you can use case
statement judgments to achieve. Status device is used for the complex ones.
As the serial/parallel change is simple, we do not explain it here.

Parallel/serial exchange is also an important skill of FPGA design. It uses
the expense of step to get the advantage in area. It is often used in the FPGA
and other devices’ interfaces. You can save the resource of FPGA pin that
occupied by data transmission. Example, the I2C controller uses parallel/serial
exchange. It sends one 8bit data in 8 cycles. Each single cycle (SCL) sends
one bit (SDA) only. Detailed achievement can follow the program:

if(3’b000 != n) n <= n – 3’b001 ;
else n <= 3’b111 ;
assign dout = din[n] ;

As mentioned before, the introduction of parallel/serial and serial/parallel
exchange can be achieved by dual-port ARM. Through controlling the bit width
of read/write dual-port RAM, achieve the exchange. E.G.: write RAM by the bit
width of 8bit and read RAM by the bit width of 1bit (here, the read speed has to
be 8 times of write speed). At this time, RAM achieves parallel/serial exchange.
In opposite, write RAM by the bit width of 1bit and read at 8bit. It finished the
serial/parallel exchange module.
（2） FIFO

FIFO is short for First In First Out. It is the first in first out data buffer. The
difference between it and the normal memory is that it doesn’t have the
external read/write address line. It can be used very easily. However, the
shortage is that it only can write / read data in order. The data address is
finished by internal read/write pointer add 1 automatically. It can do like the
normal memory that uses the address line to decide read or write the specified
address.
Some important specifications of FIF:
● FIFO width: that is THE WIDTH we often read in English material. It stands
for the data bit of one time operation of FIFO.
● FIFO depth：THE DEEPTH. It stands for that the FIFO can store several N
bit data (if width is N)

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 69

● full mark：When FIFO is full or to be full, one signal is sent by FIFO status
circuit which can stop FIFO written operation from writing to FIFO that may
cause overflow.
● empty mark：When FIFO is empty or to be empty, one signal is sent by FIFO
status circuit which can stop FIFO read operation from reading data of FIFO
that may cause underflow.
● read clock：read operation follows it. Read when the clock edge comes.
● write clock：write operation follows it. Write when the clock edge comes.
● read pointer：point to the next address to be read. Add 1 after read
automatically.
● write pointer：point to the next address to be wrote. Add 1 after write

automatically.
（read/write pointer is read/write address. But, this address cannot be chose

freely. It is continued）
According to the FIFO working clock area, we can separate FIFO to

synchronous FIFO and asynchronous FIFO. Synchronous FIFO means the
clock of read and write is the same one. Read/ write operation occurs when
clock edge comes. Asynchronous FIFO means the read clock is different
from write clock. Read clock is independent from the write one.

The difficulty of FIFO design is how to judge the FIFO empty/full status. To
guarantee the correction of data’s read and write, and avoid the overflow or
underflow, you cannot do write operation when FIFO is full. And you cannot do
read operation when the FIFO is empty. How to judge the status is the core of
the FIFO design. As the synchronous FIFO is hardly be used, here, we only
describe the asynchronous FOFI empty/full mark’s generation.

In the design used trigger, you cannot avoid to meet the metastable
problem (we won’t introduce the metastable here. You may read the related
information). Metastable cannot be deleted in the circuit refers to trigger. You
can lower the possibility of it as much as you can. One way is to use Gray
code. In Gray code, there is only one bit change in the two neighbor symbols
(binary codes, in many situations, are many symbols change at the same
time). It could avoid the metastable status when the counter and clock are
synchronous. The shortage of Gray is that it only can defines the depth of 2^n
and cannot defines FIFO depth freely as binary codes because Gray code
has to cycle one 2^n, or it isn’t the actual Gray code. Another way is to use
redundant trigger. Suppose P is the probability of one trigger’s metable status,
the probability of two serial-level-connected triggers is P². However, it will
cause the addition of delay. The metastable status will cause FIFO mistakes;
the value of read/write clock sampling address is different from the actual one.
All these will lead the address mistake of write or read. Consider the delay
usage, empty/full mark occurs not only when the FIFO is really empty/full. It
may occur before FIFO is empty/full. It is ok if it can guarantee there is no
overflow or underflow.

In our actual design, we use FIFO mostly in place that the asynchronous

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 70

data is synchronized. For example, when input/output’s delay (among chips,
PCB lines, some driver interface’s delay and etc.)can not be tested, or may
changed, you need to set up the synchronization which can use one sync
enable or sync signal to make the data be saved by RAM or FIFO. and achieve
the data synchronized purpose.

Following is the method of save data in RAM or FIFO. See data clock with
data sending provided by the previous level as write signal and write them
into RAM or FIFO. Then, use this level’s sampling clock (normal is the main
clock of data processing) to read them out. The key of this way is the
reliability of the writing data to RAM or FIFO. If using sync RAM or FIFO,
there must be a guiding signal with data sending which has the fix
relationship with data relatively dely. This signal can be the valid guiding to
data, and also can be the clock beat by the previous level. To low speed
data, you also can use asyn sampling RAM or FIFO. However, we do not
suggest you use it.

（4） Ping-Pong structure operation.
“Ping Pong Operation” is the process skill that often is used in data flow

controlling.
Ping-Pong operation’s processes are as following: input data flow

distributes the data flow time-equally to two data buffers by “input data chosen
unit”. Data buffer module can be any storage module. The often used are
dual-port RAM(DPRAM)、single-port RAM(SPRAM)、FIFO and etc. in the first
buffer cycle, cache the input data flow to “data buffer module 1”; in the second
buffer cycle, cache the input data flow to “data buffer module 2” by switch the
“input data chosen unit” and send the data in first cycle cached by “data buffer
module 1” to “data flow calculate processing module” to calculate after chose
by “input data chosen unit”. In the third buffer cycle, through the switch of
“input data chosen unit”, cache the inept data flow to “data buffer module 1”
and at the same time, switch the second cycle data cached by “data buffer
module 2” by “input data chosen data” and send to “data flow calculate
processing module” to calculate. Do in this cycle.

The most important feature of Ping-Pong operation is that it can send the
cached data flow to “data flow calculate processing module” to calculate and
process without stop by the switch of “input data chosen unit” and “output
data chosen unit” with each other by beat. Take the Ping-Pong module as a
whole body. Watch data on the two ports of this module. Input and output
data flows are continuous without any stops. So, it is very suitable to the
popline processing of data flow. Therefore, Ping-Pong operation is often used
in popline calculation to finish the seamless buffer and processing.

The second feature of Ping-Pong operation is that it can save the buffer
area. Like in the WCDMA baseband application, one frame is composed by
15 slots. Sometimes, it needs to delay one whole frame for a slot to process.
The direct way, is cache this frame data, delay one slot to process. At this
time, the length of this buffer is as 1 frame’s. Suppose data rate is 3.84Mbps,

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 71

the length of 1 frame is 10ms; the length of buffer area is 38400 bits. If using
Ping-Pong operation, only need to define two RAM (single port RAM) which
can cache 1 slot data. When write data to one RAM, read from the other one
and send them to processing unit. At this moment, each RAM’s capacity
only needs to be 2560 bits. The total of tow RAMs is only 5120 bits.

Besides, skillful use of Ping-Pong operation can make the low speed
module to process high speed data flow. Data buffer module uses dual-port
RAM and introduced a preprocessing module. This data preprocessing
module can do several calculations according to demands, such as in
WCDMA designing, it can do the job of input data flow’s dispreading,
descrambling and remove rotation. Suppose the speed of data flow input from
port A is 100Mbps, Ping-Pong buffer cycle is 10ms and following are analysis
of data rate at each port.

Speed of data flow input at port A is 100Mbps. In the first buffer cycle
10ms, through “input data chosen unit”, pass B1 and reach DPRAM1。B1’s
data flow rate is 100Mbps, too. DPRAM1 has to write 1MB data in 10ms. In the
same, in the second 10 ms, data flow is switched to DPRAM2. 口B2’s data
rate is 100Mbps also. DPRAM2 is written in 1MB data in the second 10 ms.
In the third 10ms, data flow is switched to DPRAM1 and DPRAM1 is written in
1Mb data.

Analysis carefully, you will find, until the third buffer cycle, the time of data
left to DPRAM1 read and sent to “data preprocessing module1” is 20ms in
total. Some engineers puzzled why the time is 20ms. This came from: first,
in the 10ms that write data to DPRAM2 in the second buffer cycle, DPRAM1
can do read operation. Besides, from the 5th ms in the first buffer cycle(the
moment that the absolute time is 5ms), DPRAM1 can write data to the
address after 500K and at the same time , read data from address0. When
reach 10ms, DPRAM1 just finished 1MB data writing and has read 500K
data. In this buffer period, DPRAM1 read 5ms. In the third buffer cycle, from
5th ms(the moment that the absolute tie is 5ms), similarly, it can write data to
address after 500K and at the same time read data from address0. Read
another 5ms. Therefore, before data saved in the first cycle of DPRAM1 is
covered completely, DPRAM1 can read 20ms in the most and the data to be
read is 1MB. Therefore, the data rate at port C is 1Mb/20ms=50Mbps. And
lowest data throughput of “data preprocessing module1” is 50Mbps.
Similarly, the lowest data throughput of “data preprocessing module 2” is
50Mbps also. In other words, through Ping-Pong operation, the timing of
“data preprocessing module “pressure is reduced. The required data
process rate is only half of the input data rate.

The substance of achieve process high speed data by low speed module
is: achieve the serial/parallel exchange by the buffer unit DPRAM, and use
data preprocessing module 1” and “data preprocessing module 2” to
process divided data. It is the withdrawals of the exchange between area
and speed.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 72

Example：
Here, use Ping-Pong operation to achieve an added. Its features are as

following: input one 32 bits data in each clock and take it as the 4 8-bit data.
Calculate the sum of these 4 data. Here use Ping-Pong operation to achieve.
In the first clock cycle, send input data to addition 1 unit. Do the addition. In
the second clock cycle, write the input data to addition 0 unit (addition unit is
still achieved by popline). In the third clock cycle, write data to addition 1 unit
again, at the same time, get the calculation result of the one sent to addition
1 unit in the first. In the forth clock cycle, output the calculation result of
addition 1 unit and addition 0 unit. In the fifth clock cycle, get calculation
result of output addition 0 unit. Cycle in this way, get the continue results at
the output port finally.

Its simulation result is as following:

See in the picture：data_in is the 32 bits data output. Each clock inputs

one data. data_out1 is the data sent to addition 1 unit after chose by the data
chosen unit. The upper data_out is the calculation result of addition 1 unit.
data_out2 is the data sent to addition 0 units after chose by the data chosen
unit. The lower data_out is the calculation result of the addition 0 unit. The
bottom data_out is the final calculation result. We can see that, from data
input to the final result, three clock cycles have been passed. In these three
cycles, the first cycle sends the data it read to addition 1 unit. The second
cycle sends the data it read to addition 0 unit, and the addition 1 unit does the
calculation at the same time. The third clock gets the calculation result of
addition 1 unit and addition 0 unit does calculation at the same time. And
output the calculation result of addition 1 unit until the forth cycle. Cycle in
turn and get the continuous output.

4.1.3 Experiment content

This experiment mainly is used to learn and master four kinds of data flow
controlling ways: popline, serial and parallel converter, FIFO and Ping-Pong
operation. Program separately to achieve their functions:
● design one popline adder with symbols.
● design a 1:8 serial and parallel converter
● design a interface FIFO(width bit 8，depth bit 128）
● program a adder by Ping-Pong operation.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 73

4.1.4 Experiment steps

This experiment mainly is doing the simulation in the ModelSim working
environment. Detailed steps are as following:
1．Set up project
2．Load files

3．Compile

在Project 页

4．Simulate

In page Library

5．Add waveform

In page Sim

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 74

6．simulation

In pop-up waveform window, choose in the tool bar.

4.1.5 Experiment result

（一）popline adder

（二）serial and parallel converter

（三）FIFO

（四）Ping-Pong operation

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 75

Experiment17 MicroBlaze control LED
experiment

5.1.1Experiment purpose

1．Know the structure of Micro Blaze
2．Learn the usage of Platform
3．Know the working principle of OPB bus
4．Master the basic usage of Micro Blaze

5.1.2 Experiment theory

The MicroBlaze32 soft-core processor of Xilinx Company is the fastest
soft processing solution in this field. The standard peripheral set, which
supports Core Connect bus, provides the designers with compatibility and
reuse ability. Running in the 150MHz clock, Micro Blaze processor can provide
125D-MIPS performance. It’s very suitable for designing complicated systems
aiming at network, telecommunication, data communication, embedded type,
and consumer market.
（1）Micro Blaze structure

Micro Blaze is the microprocessor IP core based on FPGA of Xilinx
Company. Together with other peripheral IP core, it can design the
programmable SOPC. Micro Blaze processor is an independent 32-bit
instruction and data bus, adopting RISC framework and Harvard Architecture.
It can execute the programs stored in on-chip memory and external memory at
full speed and visit the data there.
● Internal structure

Inside Micro Blaze, there are 32 32-bit purpose registers and 2 32-bit
special function registers —— PC pointer and MSR state EFLAGS. In order to
improve performance, Micro Blaze also has instructions and data cache. All
the instructions are 32 bits in length; there are 3 operands and 2 addressing
odes. Instructions can be divided into logical operation, arithmetic operation,
branch, memory read/write, special instructions, etc. The assembly line of
instruction execution is parallel line, which can be classified into three
categories: fetching, decoding, and execution.
● Core Connect technology

Core Connect is the on-chip bus communication chain developed by IBM,
which makes it possible to connect several source chips nuclear into a
complete new chip. Core Connect technology makes integration much easier
and enables the reuse of processor, system, and peripheral core in the

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 76

standard production platform design, achieving higher overall system
performance.

As is shown below, Core Connect bus architecture includes PLB, OPB, 1
bus bridge, 2 arbiters, and 1 DCR bus. Xilinx will provide all the embedded
processor users with IBM Core Connect permission, since it is the basis of all
the Xilinx embedded processors’ design. Micro Blaze processor uses the
same bus as IBM PowerPC, which serves as peripheral. Although Micro Blaze
soft processor is totally independent of Power PC, it enables the designers to
choose the method of operation on chip, including embedded PowerPC, and
share its peripheral.
● Core Connect architecture——OPB

The kernel can visit low speed and low performance system resources
through OPB. OPB is a completely sync bus; its function lies in a single bus
layer, rather than connect to the processor core directly. The OPB interface
provides separated 32-bit address bus and 32-bit data bus. With the help of
PLB to OPB bridge, the processor can visit peripheral through OPB, and in
turn, as OPB bus controller, the peripheral can visit the storage through PLB
with the help of OPB to PLB bridge.
● Core Connect architecture——Processor Local Bus（PLB）

PLB interface provides commands and data side with independent 32-bit
address and 64-bit data bus. The A device embedded with PLB interface can
be connected with the B device to read and write data through PLB signal,
which is supported by PLB. Each A device is linked to PLB through
independent address bus, read data bus, and write data bus. While PLB B
device is linked to PLB through shared but separated address bus, read data
bus, and write data bus. Therefore, to each data bus, there is complicated
transmission control and status signal.

In order to permit the A device to get the bus own ship through
competition, there is a central judgment institution authorizing the visit to PLB.
And this judgment institution is of enough flexibility to provide all kinds of
priority.

● Core Connect architecture——Device Control Register Bus（DCR）

Device control Register Bus（DCR） is designed for the data transmission
between CPU general purpose register （GPR）and the slave logical device
control register of DCR.
● （2）Development of Micro Blaze

Application EDK (Embedded Development Kits) can develop Micro Blaze
IP Core and build embedded system. The tool kit integrated the hardware
platform generator, the software platform generator, the simulation model
generator, software compiler, software debugging aids, etc; EDK provides the
integrated development environment XPS (Xilinx platform studio) so as to use
all the system tools to finish the whole procedure of embedded system
development. EDK is also embedded with some peripheral interface IP cores,

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 77

such as LMB,OPB bus interface, UART, interrupt controller, timer and so on,
with which we can build a relatively complete embedded micro processor
system.

The embedded system designed on FPGA can be classified into 5 grades.
Among these, the IP core can be developed on the lowest layer of hardware
resource, or set up the hardware development part of embedded system by
using developed IP core; The software development includes the development
of IP core device driver, application interface (API), and application layer
(algorithm).

Build the basic embedded system by utilizing Micro Blaze, which can be
connected with various kinds of peripheral IP core through standard bus
interface- LMB bus and OPB bus IP core.

Each IP core provided by EDK has corresponding device driver and
application interface, so the users can program their own application software
and algorithm routine by simply using the related function library. As for the IP
cores developed by users, they have to program corresponding drivers and
interface function themselves.
（3） Application of Micro Blaze

Usually the Micro processor + coprocessor structure is adopted in
software radio system: the micro processor mainly completes the work of
system communication and baseband processing by DSP, and the
coprocessor mainly complete the bottom algorithm of synchronization and
preprocessing on FPGA. It is relatively simple to adopt baseband processing
algorithm in this topic. Replace the DSP with application software processor so
that the whole system can be designed within one piece of FPGA, which can
simplify system structure and improve system’s overall performance.
 For example, There are two tasks for the system on FPGA——send and
receive data. As for sending, FPGA first complete the initialization of hardware
algorithm, then receive serial data and save it into two-part SRAM; System
hardware algorithm part does the baseband processing to these data and
sends the result to DA converter. As for receiving, after receiving the data from
DA converter, FPGA will do baseband processing to the data and save it into
two-part SRAM; after that, send these data back to A device.

The system hardware can be designed under XPS integrated
development environment of EDK development kits. Add IP core, connect
system, and set each parameter in this environment. Since the hardware
algorithm module in the system is not standard module, the project should be
set in sub module way. Use the platform generator, according to MHS
document, to generate NGC document of embedded system sub module.
Afterwards, in the ISE design environment, connect the NGC documents with
hardware algorithm module through GPIO port exteriorly so as to constitute the
hardware module of the whole application system.

Each peripheral IP module on EDK has its own software function library.
Add the needed header files of peripheral function library into program by

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 78

Libgen tools so that the peripherals can be operated and controlled through
calling these functions.

Designing the embedded system by adopting FPGA and Micro Blaze
realizes the function of multi-piece ASIC and narrows the receiver volume
greatly, making it easy for the system to achieve miniaturization and
integration. Utilizing hardware to achieve the capture and Frequency hopping
synchronous algorithm can accelerate the capture and tracking speed. The
experiment result proves the design of FPGA system feasible. With
high-capacity SDRAM disposed in system, high speed communication
interface such as Ethernet and USB added, and real-time operation system
run on the processor, it can be built into a relatively complete embedded
system based on FPGA, which is quite promising in fields such as network,
communication and consumption.

The design procedure of software and corresponding hardware
development on FPGA of Xilinx Company is as follows:

5.1.3 Experiment content

This experiment controls 8LEDs on development board through using
processer MicroBlaze.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 79

5.1.4 Experiment steps

1．Start Xilinx Platform Studio
Start All program Xilinx Platform Studio 11 Xilinx

Platform Studio
2．Set up a system

Choose OK；

Choose the path of system to be generated in Project File. Choose OK；

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 80

Here, choose set a new design, Next>

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 81

Choose I would like to create a system for a custom board and development

board’s FPGA type: spartan3 xc3s1000 ft256 - 4 , Reset. Choose Active
LOW。Next>

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 82

Choose Single-Processor System and click Next>

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 83

There is only one 50MHz clock on the development board. Therefore, here fill
50.00
Processor Type : MicroBlaze
Local Memory : 8 KB
Next>

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 84

Add the port connects to the external and choose Add Device···

In pop-up dialogue choose IO Interface Type : GPIO， Device : LEDS，OK

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 85

This experiment only needs to add LEDS. Choose Next>

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 86

Next>

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 87

Next>

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 88

Finish

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 89

In Bus Interfaces, you can change property by double click item. Each

interface related to the process is list in Ports. The upper External Ports lists
external ports (pins need to be defined). In Addresses, you can modify
peripheral devices’ physical address. The programming after the address
stands for this device
This experiment needn’t modify.
4．Set download related

To download the generated processer to the development board, first of
all, you have to define pins.

In Project Files submenu, double click UCF File: data\system\ucf. In the

right working area, you can see following files:
Net fpga_0_LEDS_GPIO_IO_O_pin<0> LOC=;
Net fpga_0_LEDS_GPIO_IO_O_pin<1> LOC=;

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 90

Net fpga_0_LEDS_GPIO_IO_O_pin<2> LOC=;
Net fpga_0_LEDS_GPIO_IO_O_pin<3> LOC=;
Net fpga_0_LEDS_GPIO_IO_O_pin<4> LOC=;
Net fpga_0_LEDS_GPIO_IO_O_pin<5> LOC=;
Net fpga_0_LEDS_GPIO_IO_O_pin<6> LOC=;
Net fpga_0_LEDS_GPIO_IO_O_pin<7> LOC=;
Net fpga_0_clk_1_sys_clk_pin TNM_NET = sys_clk_pin;
TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 50000 kHz;
Net fpga_0_clk_1_sys_clk_pin LOC=;
Net fpga_0_rst_1_sys_rst_pin TIG;
Net fpga_0_rst_1_sys_rst_pin LOC=;
Here list only 8 GPIO as there are only 8 LED on the development board.

First, delete the “#” in front of the pin (the line starts with “#” is notes). Second,
put the pin number between equal sign and semicolon in each line. After
modification, you can see:

Net fpga_0_LEDS_GPIO_IO_O_pin<0> LOC=A5;
Net fpga_0_LEDS_GPIO_IO_O_pin<1> LOC=A7;
Net fpga_0_LEDS_GPIO_IO_O_pin<2> LOC=A3;
Net fpga_0_LEDS_GPIO_IO_O_pin<3> LOC=D5;
Net fpga_0_LEDS_GPIO_IO_O_pin<4> LOC=B4;
Net fpga_0_LEDS_GPIO_IO_O_pin<5> LOC=A4;
Net fpga_0_LEDS_GPIO_IO_O_pin<6> LOC=C5;
Net fpga_0_LEDS_GPIO_IO_O_pin<7> LOC=B5;
Net fpga_0_clk_1_sys_clk_pin TNM_NET = sys_clk_pin;
TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 50000 kHz;
Net fpga_0_clk_1_sys_clk_pin LOC=T9;
Net fpga_0_rst_1_sys_rst_pin TIG;
Net fpga_0_rst_1_sys_rst_pin LOC=K14;
Save file and finish the IO definitions.
In Project Files submenu, double click iMPACT Command

File:etc\download.cmd. In the right working area, you can see following files:
setMode -bscan
setCable -p auto
identify
assignfile -p 5 -file implementation/download.bit
program -p 5
quit
Here, you need to change 1 to 2 in line 4 and 5 because in the download

chain of our development board, JTAG download in on the second. There are
no other modifications required.

After modification, you can see:
setMode -bscan
setCable -p auto
identify

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 91

assignfile -p 2 -file implementation/download.bit
program -p 2
quit
Save file.

5．Write program C
After hardware design, comes software program. Choose Application page:

In upper picture, you can see, Platform add a storage testing program for the

processer automatically. This program uses serial to output results which will
be introduced in next experiment. Here, we have to re-write a C program.
Detailed operations are as following:
First, double click Add Software Application Project·.·and then add a new

project:

Write project name and used processer in upper dialogue. After OK, you can

see the new project has been added in the list:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 92

Now, you need to click right on the new set storage testing project. Choose
Mark to Initialize BRAMs in the pop-up submenu. Activate this project because
Platform allows only one project be active.

In upper column, right click on Source and choose Add New File· to set a new
C file for the project. Content is as following:

#include "xparameters.h"
void main(){
int *i;
i = 0x81400000 ;
(*i) = 0xff000000 ;
}

Save file。
6．Download
First, operate on the software and in the tool bar choose Software：
Program C project: choose Generate Libraries and BSPs and will generate
drivers of peripheral devices’ and driver library. Configure STDIN/STDOUT
and generate interrupt processing mechanism.

Then choose Build All User Applications to program project C.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 93

Second, operate on hardware and in tool bar choose Hardware：
Generate Net list

Generate Bit stream

Then can do Download and in the tool bar choose Device Configuration：
Download Bit stream

5.1.5 Experiment result

When the download is finished, you can see LED on the development
board turns on.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 94

Experiment18 MicroBlaze control serial
communication experiment

5.2.1 Experiment purpose

1．Master the usage of Xilinx Platform Studio
2．Learn the usage of Platform Studio EDK
3．Write program C, and control serial ‘s output.

5.2.2 Experiment theory

OPB UART Late is a serial controller provided by EDK for MicroBlaze.
Features are as following:

● One sending pipe and one receiving pine (full-duplex).
● 16 characters’ sending and receiving FIFO
● Data bytes in character are configurate （5-8）
● Configurate parity is odd parity or even parity.
● Configurate Baud rate
UART Late provides four registers. In programming, user can achieve the

serial communication features by controlling the internal data information:
UART Late Register

Status Reg Status Register

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 95

Control Reg Control Register

When UART Lite interrupt enable is not set yet, if any of the following

condition is met, the interrupt occours:
（1） If there is valid character existing in receiving FIFO, interrupt keeps

activation until accept FIFO is empty.
（2） When sending FIFO from non-empty to empty, after send the last

character of FIFO, the interrupt will be activated and keeps one clock circle.
Detailed design and achieving plan is as following:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 96

5.2.3 Experiment content

1．Test bram by MicroBlaze.
2．Use Platform to control serial output

5.2.4 Experiment steps

1．Set up a processer follow the experiment steps as last one. The
difference is when choosing the peripheral device, select the UART and bram.
Detailed operations are as following:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 97

Choose UART， RS232，OK

In upper dialog, you can adjust the RS232 interface’s property. Data Bits

is 8bit. Baud rate chooses 9600. Parity chooses Odd.
And you have to add devices in the system.

Add xps_bram_if_cntlr and xps_timer and adjust the property.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 98

The added xps_bram_if_cntlr as upper is the interface controller on the

OPB general and chip BlockRAM. Xps_timer is the clock controller of OPB
general line. Choose One timer is present。

Following experiment steps just follow the steps as before which can
generate one processor.

2．Adjust system property.

Double click the iMPACT Command File in the Platform window:
etc\download.cmd. Change 1 to 2 in the line 4 and 5 as in our downloading
chain, JTAG mode download is in the second. Other setting does not need
adjustment.

After adjusting, it is as following:
setMode -bscan
setCable -p auto
identify
assignfile -p 2 -file implementation/download.bit

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 99

program -p 2
quit
Save file.
Double click UCF File in the window Platform: data\system.ucf. Define the

pins as following:
Net fpga_0_RS232_RX_pin LOC=C2;
Net fpga_0_RS232_TX_pin LOC=C1;
Net fpga_0_clk_1_sys_clk_pin TNM_NET = sys_clk_pin;
TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 50000 kHz;
Net fpga_0_clk_1_sys_clk_pin LOC=T9;
Net fpga_0_rst_1_sys_rst_pin TIG;
Net fpga_0_rst_1_sys_rst_pin LOC=K14;
Save file.

3．Add module C
In the left project setting area, choose Applications page and we can see

the testing C program provided by Platform:

Program C locates in Sources’ subdirectory. You can click to check and

do the necessary adjustment.
4．Download
 Download steps are as experiment before.
 After download is finished, if the downloaded is the chip memory testing
program, on the PC you can see the letters: testing successful.
5．Set up a project C by yourself:

Set up a new project as the experiment before and close the original RAM
testing program. Add program for the new project:

#include "xparameters.h"
#define UART_RX 0x84000000
#define UART_TX 0x84000004
#define UART_ST 0x84000008
#define UART_CT 0x8400000c
delay1()
{

int q;
for(q=0;q<16000;q++)
{ ;
}

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 100

}
int main()
{

int i,da,db;
int *UART;
char *j="hahaha\n1";
UART=(int*)UART_ST;
da=*(UART);
i=1;
do{

UART=(int*)UART_TX;
(UART)=(j);
j++;
i++;
if((da&0x08)!=0)

{
UART=(int*)UART_CT;
db=*(UART);
db=db|0x01;
*(UART)=db;

}
delay1();

}while(*(j)!='1');
}

Generate library，Build project, update downloading bit file and download.
6．Online debugging:
 Use serial line to connect PC and development board and open serial
debugging software.

You will use two icons in the Xilinx Platform Studio tool bar when

does the online debugging.

First, click and comes the following dialog:

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 101

Then click the tool bar . Choose the file name set by yourself in coming

dialog:

OK

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 102

Click and run the program. Continually click until program running
is finished. In the program processing, you can see the characters to be
displayed in serial debugging software one by one.

Eleckits Studio http://www.eleckits.com Skype：eleckits2011

 103

5.2.5 Experiment result

Can output the specified characters from development board’s serial.

