Xilinx Version
XC351000 Development Board

Experiment Guider

Verl.O

Eleckits
www.eleckits.com

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Catalogue

Experiment 1 LED Control Experiment.............. 5
1.1.1 EXPEIIMENT PUIPOSE ..ovvevveviiteeieeie it ete et et e ste et et et e ste e e e s e stessaessebesbeaseessesaestaeseenseseesneanes 5
1.1.2 EXPEIMENT tNEOIY ..ttt be e ne s reens 5
1.1.3 EXPErIMENT CONTENEouviiiiiiiciieie ettt be e sb e beenaenaesaesneens 5
114 EXPEIMENT SEEPS ...vivieieite sttt ste sttt ettt sttt et e se et et e s beese e besbesraessesaesteeneanes 5
115 EXPErMENT FESUIL ..ot e et et reens 5

Experiment 2 Divider Experiment 6
1.2.1 EXPEIIMENT PUIPOSE ..ovvevveiicieeteeteste st et e steste et et e testeesae s e s tessaess et e ssaasaessesaesseeseessessenneanes 6
1.2.2 EXPEIMENT TNEOIY ..ottt sttt reene 6
1.2.3 EXPEIMENT CONTENTovviiiiiiiciieie ettt e be et e reena e e e saenreans 6
1.2.4 EXPEIIMENT FESUILoooiiie ettt raens 6

Experiment 3 State device application experiment... 7

1.3.1 EXPEIIMENT PUIPOSE ..evvevvevecteeieeie it et et e steste et et e st e s te et e s e tessaessebestessaesaesaesbaeneenseseesneenes 7
1.3.2 EXPEIMENT TNEOIY ...eiiii et be et saesaeene 7
1.3.3 EXPEIMENT CONTENEcuviiiiiiicie ettt sttt ra s et e s teeneesaesreeneas 10
1.3.4 EXPErMENT FESUILooiiiieiice ettt reeneas 10
Experiment 4 Digital tube control experiment 10
1.4.1 EXPEIIMENT PUIPOSE ..ovveveeveitiesieiesteeteete e staesaestestesta e s estestessaesaessessaassessesseaseessessessenneas 10
1.4.2 EXPEIMENT TNEOIY ..ottt st st ne e e aenne s 10
1.4.3 EXPEIIMENT CONTENEotiiiiiticie ettt ettt et et re s e e e stesteeneeeesaeeneas 12
1.4.4 EXPErIMENT TESUILooiiiiie et re e aeeneas 12
Experiment 5 Counter experiment................. 12
1.5.1 EXPEIMENT PUIPOSE ..ovveuviiictiesieiesteeteete e s te et et estesta et e stesteesaesaestestaassessesseaseessessesaenneas 12
1.5.2 EXPEIMENT TNEOIY ..ottt e e srenne s 12
1.5.3 EXPEIMENT CONTENEcuviitiiiiciecie ettt sttt st s e e testeeneeeesreeneas 13
1.5.4 EXPErMENT FESUILooiiiiiice et e e e aeeneas 13
Experiment6 Button debounce experiment......... 14
1.6.1 EXPEIIMENT PUIPOSE ..ovvevvevicieetieiesteeteetesteste et et ste e et e stesteesaesestessaassessesseaseessessesaeaneas 14
1.6.2 EXPEIMENT TNEOIY ..ottt e e renne s 14
1.6.3 EXPEIMENT CONTENEoviiiiiiicie ettt ettt e st e e s e et estesteeneeeesaeaneas 14
1.6.4 EXPEIIMENT SEEPS ...vivieieite ittt ettt st st e et e b e s besre e b e sbesaeeneetesaesneeneas 15
1.6.5 EXPErMENT FESUILooiiiiiice et e e aesaeeneas 15
Experiment 7 Buzzer control experiment........... 16
1.7.1 EXPEIIMENT PUIPOSE ..ovvevveiecieesieiesteetee et esta et et e steeta e s esaesteesaesaesaessaassessesseaseessessesaeaneas 16
1.7.2 EXPEIMENT TNEOIY ...ttt teene e e aenne s 16

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

1.7.3 EXPEIIMENT CONTENEcviiiiiieeie ittt ettt te e s et e besteenseeesaeeneas 17
1.7.4 EXPEIMENT SEEPS .. vivieieite ittt te ettt et et s te et e b e beere e b e besbeeseetesaesnneneas 17
1.7.5 EXPErIMENT FESUIL ..ottt aeene s 17
Experiment8 LCD display control experiment 17
2.1.1 EXPErIMENT PUIPOSE ...evveveerieieteeteesiestesteeseeseestestesseessessesseasseseessesseasaassessessaaseessessessessens 17
2.1.2 EXPEriMENt thEOIY ...c.viiieceicc ettt e s te st saesaeene s 18
2.1.3 EXPErIMENE CONEENE .. .eiviieieieitecie ettt ettt be e e st e s beeneenaesaesaeeneas 22
2.1, 4 EXPEIIMENT SEEPS ..vvivvetestieieste st eee e s e ste e e et e st e s teese e st e st e sbeessesaesbesseeseebesaesseessesseseesnaeneas 22
2.1.5 EXPErIMENT TESUILc.viiieeeie ettt s te e e et e ne e e e saesreeneas 22
Experiment9 VGA display control experiment...... 22
2.2.1 EXPErIMENT PUIPOSE ..vevveveerierieteeteetestesteeseetesaestessaessestesseasseseessesseasaessessessaaseessessessesneas 22
2.2.2 EXPErIMENt thBOIY ...c.viiiiceiccic ettt e re e e aesrenne s 22
2.2.3 EXPErIMENE CONEENE .. votieeieiciie sttt sttt st et be e e e e s beare e e e saesaeaneas 24
2.2.4 EXPEIIMENT SEEPS ..vvivveteetieieste st etestesteste e et e st e steese et e st e sbeessestestessa e s e sbesaesssesseseeseesneeneas 25
2.2.5 EXPEIIMENT TESUILc.viiieceieie ettt st e b et e ne e e e snesreeneas 25

Experimentl10 Serial communication experiment ... 25

2.3.1 EXPErIMENT PUIPOSE ...cvveveerierieiteeteeiestestesteetestestestaessestesseaseeseesaesseaseessessessaaseessessessenneas 25
2.3.2 EXPErIMENt thEOIY ...c.veiiiceie ettt e et reesaesaenne s 25
2.3.3 EXPErIMENE CONEENE .. veviieieie ettt sttt e b e s teane e e e snesaeeneas 27
2.3.4 EXPEIIMENT SEEPS ...vvivveteetieieste sttt e stesteste e e et et este e s et e st e sbe e st e sbesbesbeeseebesbesseessessesteeneeneas 27
2.3.5 EXPEIIMENT TESUILc.viiieceieie ettt a et e ne e e e snesaeeneas 27
Experimentl11 PS2 interface control and display experimentc.ccocevvvivieeresiesncciesennens 28
2.4 LEXPEIIMENT PUIPOSE ...eevvetiiiretieieitesteeeeste s e eteeaestesteeseessestesseessessestesseessessesseaseesseseesneaneas 28
2.4.2 EXPErIMENt thEOIY ...c.viiiiieicic ettt be s teeneesaesaeene s 28
2.4.3 EXPErIMENt CONEENE .. veveivieiiiie sttt sttt sre e re e et e s beareeneesnesreeneas 29
24 4EXPEIIMENE TESUILcvviiiieicce ettt e e e e teete e e e saesreeneas 29

Experimentl2 USB interface read/write control

EXPEIMENt . it i i et e e e e 30
2.5.1 EXPErIMENT PUIPOSE ...cvveveerierieteeteetestesteataetesaestesseessessesseassessessesseasaessessesseassasseseessenneas 30
2.5.2 EXPEriMENt thEOIY ...c.viiiiceiccii ettt et aenne s 30
2.5.3 EXPErIMENt CONEENEevieeieic ettt ettt st e beene e e e snesaeane s 32
2.5.4 EXPEIIMENT SEEPS ...vvivveteetieteste sttt e ste st s te et e st e st e e se et e st e s teessestesbesbeessesbesbesraessesaesteeneeneas 33
2.5.5 EXPEIIMENE TESUILc.viiieieieic ettt sttt e b et e ne e e snesreeneas 39

Experiment 13 SRAM read/write control experiment 40

3.1.1 EXPErIMENT PUIPOSE ...cvveveerierieteeteetestesteeteestestestessaessestesseasseseessesteeseessessessaaseessessesseaneas 40
3.1.2 EXPErIMENt thEOIY ...c.viiiiceiccic et e be et aesreene s 40
3.1.3 EXPErIMENt CONEENE .. .eveevieieiie ettt ettt be e e b e beane e s e saesreeneas 43
3.1 4 EXPEIIMENT SEEPS ..vvivveiestieieste sttt e ste s e st et e st e ste e st et e st e sbeessesbesbesbeeseebesbessaessesaestesnaeneas 43

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

3 L5 EXPErIMENE FESUILc.viiieceiccc ettt st e s beare e e saesaeeneas 43

Experimentl4 SDRAM read/write control experiment44

3.2.1 EXPErIMENT PUIPOSE ...evveveerieieteeteetestesteeteeaesaestesteessestesseassessesaesseeseessessessaaseessessesseaneas 44
3.2.2 EXPErIMENE thBOIY ...c.viiticie ettt s be st aesaenne s 44
3.2.3 EXPErIMENE CONEENE .. .evietieieiie sttt ettt e st e s beese e e e snesaeaneas 54
3.3.4 EXPEIIMENT SEEPS ..vvevveteeeieiesteste et e sie e s te et e st e ste et e st e ste e s et e sbesbeeseesbesbesseesseseestesnaeneas 55
3.2.5 EXPEIIMENT TESUILc.viieceiccie ettt st e st e re e e e saesreeneas 59

Experimentl5 FLASH read/write control experiment 60

3.3.1 EXPErIMENT PUIPOSE ...cvveveerieieiteeteetestesteeteetestestesseeseestestesssessesaesteeseessessessaaseesseseesaenneas 60
3.3.2 EXPErIMENt thEOIY ...c.viiiiceicic e be e aesreene s 60
3.3.3 EXPErIMENE CONEENEeveevieieiie sttt et e steete e e e saesreeneas 64
3.3 4 EXPEIIMENT TESUILc.viieceiecic ettt st sb e st e e re e e e saesaeeneas 64
Experimentl16 Data flow control experiment........ 65
4.1.1 EXPEriMENT PUIPOSE ..vevvivieeiesieteeteeseestestesteestestestessaestestesteasaessessesseassessessesseasseseessesseases 65
4.1.2 EXPErIMENE tNEOTYviiiiieieic ettt sttt be e esnesreanes 65
4.1.3 EXPErimMENT CONTENTocviiiiiiiiie ettt st aeera et enresreens 72
4.1.4 EXPEIIMENT SEEPS .evveviteitiesieste sttt ettt sttt st e s te et a et e s re e s e saesbeene e s e eesreeneenes 73
4.1.5 EXPErIMENT FESUILcviiiiiiieic ettt sttt sbe e e esresneens 74

Experimentl7 MicroBlaze control LED experiment.. 75

5.1.1EXPErIMENT PUIPOSE ...ecvveiviivreiieiesieeteestesteste e e e e steste e e et e stestaeseesaesbeeseessessesseaseessessesaaeneas 75
5.1.2 EXPErIMENt thEOIY ...c.viiieeeiei ettt s te st saesrenne s 75
5.1.3 EXPErIMENE CONEENE .. .evievieiiiie sttt sttt ettt e s teene e e e saesreeneas 78
5.1.4 EXPEIIMENT SEEPS ...vvivvetestieieste st et et steste e et e st e ste e st et e sbesbe e st e b e sbesre e e e besbessaeseebeseesnaeneas 79
5.1.5 EXPEIIMENT TESUILc.viieceicic ettt sttt e ne e e e saesaeeneas 93
Experimentl18 MicroBlaze control serial
communication experiment............. ..., 94
5.2.1 EXPErIMENT PUIPOSE ...cvveiveeiieieteeteeiestesteeseessestestesseessessesseassessessesseesaessessesseassessessessensens 94
5.2.2 EXPErIMENt thEOIY ...c.viiiiciice ettt st renne s 94
5.2.3 EXPErIMENt CONEENE .. .evieiieiciie ettt sttt b e s teene e e e saesaeene s 96
5. 2.4 EXPEIIMENT SEEPS ...vvivveteeteeieste sttt e ste et e et e st e st ettt e st e s be e st e stesbesbeessesbesaessaesseeesteaneeneas 96
5.2.5 EXPEIIMENT FESUILc.viiiieeie ettt ettt ae e e e resne e 103

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Experiment 1 LED Control Experiment

1.1.1 Experiment purpose

1. Control 8 LED’S displaying status by 4 buttons on development board.

1.1.2 Experiment theory

Write one button on the development board to control the LED displaying.
Detailed displaying program is as following:

State | SW2 | SW3 | SW4 | SW5 | LEDO | LED1 | LED2 | LED3 | LED4 | LEDS | LEDG6 | LED7

S1 1 1 1 0 0 0 0 0 0 0 0 1

S2 1 1 0 1 0 0 0 0 0 0 1 0

S3 1 0 1 1 0 0 0 0 0 1 0 0

S4 0 1 1 1 0 0 0 0 1 0 0 0

S5 1 1 0 0 0 0 0 1 0 0 0 0

S6 1 0 0 1 0 0 1 0 0 0 0 0

S7 0 0 1 1 0 1 0 0 0 0 0 0

S8 0 1 1 0 1 0 0 0 0 0 0 0
Default 0 0 0 0 0 0 0 0 0

1.1.3 Experiment content

Write button controlling LED program and achieve them one the
development board.

1.1.4 Experiment steps

Programmings download on Xilinx ISE 11. Debug on the development board.
Detailed ISE software operation is referenced to (ISE Software Using
Description) .

1.1.5 Experiment result

You can see the expected LED turns to shining on the development
board.

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Experiment 2 Divider Experiment

1.2.1 Experiment purpose

1. Design one divider which is specified frequency coefficient.

1.2.2 Experiment theory

Frequency divided means the processed clock frequency is lower than
input clock frequency. On the contrary, the output clock frequency is higher
input one, we call it frequency multiplication. Frequency divided is achieved
by user programming. The frequency multiplication is achieved by PLL or DLL
which FPGA owns itself. Theoretically speaking, there is no limitation of
frequency divided if the clock cycle is less then endless. However, frequency
multiplication is upon the FPGA's features and some constraints in actual
design. They will decide the frequency after multiplied.

Divider is the base of digital circuit design. Not only in image processing but
also in audio signal processing, you need to use it a lot.

Experiment development board provides one 50MHz clock frequency. In
actual using, we seldom to use the precise clock frequency 50MHz. We use
the frequency lower than 50MHz. For example, in the video processing, most
of the chips' working frequency like SAA7121 is in 20-30MHz, the working
frequency of the clock line SCL of IIC controller is in 20-30MHz and etc. We
have to provide clock frequency dividing to the development boards to make
them suit the different application programs as the main clock frequency.

There are many ways of frequency dividing. Or you can generate the clock
that has different duty cycles and frequencies. The frequency factor normally
used is integer power of 2 and frequency deviding’s duty cycle is 50%.

1.2.3 Experiment content

Do the 2 integer power frequency dividing of the input clock 50MHz.
Powers are: 18, 19, 20, 21, 22, 23, 24, 25. Then, use the divided clocks
to control 8 LEDs on the board shinning. Watch the dividing effect.

1.2.4 Experiment result

See LED on the board shinning by different frequencies. At the high
frequency, we think it keep shining as the visual sensitivity is not enough.

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Experiment 3 State device application

experiment

1.3.1 Experiment purpose

1. Learn how to use ISE.
2. Know the structure of state machine.
3. Learn how to use state machine to write relatively complex programs.

1.3.2 Experiment theory

State machine design is the core part of HDL designing. Almost all
designs use its thought. State machine is the cycle mechanism
composited by serial of states. This structure can make programmer to use
HDL language better. Meanwhile, the state machine with certain style can
improve the readability and the debugging of the programs.

There are many elements of state machine design. Following are some
important ones:

e State machine’s coding. Binary. gray-code coding uses least triggers
and more combination logics. But the one-hot coding is opposite.
Because CPLD providing more combination logics and FPGA providing
more triggers, CPLD uses gray-code, and normally FPGA uses one-hot
coding. On the other hand, gray-code and binary is more effective to
small design and one-hot suits large state machines more.

e About FSM coding. FSM has two modes: Miller and Moore. Elements
are input (including reset), status (including current state operation), state
transfer condition and state output condition. There are many ways and
skills of FSM designing. Generally speaking, there are two types. One is
write state transfer, operation and judging to one module(process. block) .
The other is write state transfer in one module, state operation and
judging in another one (in Verilog codes, equals to use two “always”
blocks).

The second way is better. Following are reasons:

First, FSM is the same as others. You’d better uses timing synchronization
way to design. No repetition of advantages here. After state machine
achieved, state transfer is achieved by register which is the part of the time
synchronization. The judging of state transfer condition is achieved by the
judging of combination logic. Why the second way is more reasonable than
the first one, is the second coding put the synchronization timing and
combination logic to different program blocks(process, block)to achieve. The

7

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

advantages of this are not only for better the reading, understanding,
maintaining, but also better for the codes optimizing, suitable timing
constraint condition adding, designing achieved by placement and routing
device.
e Initial status and default status
One complete state device (nice robustness) should have initialization state
and default state. When the chip is powered or reset, the state device
should reset all judgments conditions automatically and enter initialization
state. One thing need you attention. Most of FPGA has GSR (Global
Set/Reset) signal. When FPGA is powered, GSR signal higher, it will
reset/locate all registers, RAM units and etc. It is the logic configuration in
FPGA and not yet be effective. So it cannot guarantee entering the
initialization state correctly. Therefore, use GSR to enter FPGA initialization
state usually will cause some problems. The normal way is use the
asynchronous reset signal, and sometimes synchronous reset. However,
please attention to the synchronous reset’s logic design. Another way to
solve this problem is set default initialized state codes zero. In this way,
when GST reset, the state device will enter initialization state automatically.
On the other hand, the state device should have one default (default) state.
When can meet transfer conditions or state changed suddenly, it can protect
the logic from “bad cycle”. It is the important requirement to the state
device’s robustness. The state device has to have the feature “self-recover”.
To coding is to case, and please pay high attention to sentence if-else. You
have to complete condition judgments sentences. In VDL, when use CASE
sentences, you have to use “When Others “to set up default state. When use
sentence “IF...THEN...ELSE”, you have to specify default state in “ELSE”. In
Verilog, when use “case” sentences, you have to use “default” to set up
default state. Notes of using “if ...else” are similar.
Here introduce another skill: most of the synthesizers support Verilog coding
state device’s complete state feature—"full case”. This feature is used to
specify the state that integrates the state device into complete state. For
example: following are the command formats which Synplicity's synthesis
tools (Synplify/Synplify Pro,Amplify, etc) support:
case (current_state) // synthesis full_case
2'b00 : next_state <= 2’'b01;
2'b01 : next_state <= 2'b11;
2'b11 : next_state <= 2’b00;
/lthese two sections of codes are equal.
case (current_state)
2'b00 : next_state <= 2’'b01;
2'b01 : next_state <= 2'b11;
2'b11 : next_state <= 2’b00;
default : next_state <= 2bx;
e You can use parameter to definite the state device. We do not suggest

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

use define macro to definite. When define Marco is programming, it will
replace the Marco definite in whole design automatically. However,
parameter only defines the module internal specifications. They will not
be confused with other state devices out of the module.
e When program the state device, you'd better write state transfer and
works in each state separately in two or more always sub-blocks. It makes
reading easier and is better for the adjusting. Following are details
(suggest use three-step FAS description way) :
always @ (posedge clk or negedge rst_n)

if(Irst_n)
state <= 2’b00 ;
else

state <= next_state ;

always @ (posedge clk or negedge rst_n)

if(Irst_n)

next_state <= 2’b00 ;

else

case (state)

2’b00: begin if(en) next_state<=2’b01; else next_state<=state; end

2’b01: begin if(en) next_state<=2’b10; else next_state<=state; end

2’b10: begin if(en) next_state<=2'b11; else next_state<=state; end

2’b11: begin if(en) next_state<=2’b00; else next_state<=state; end

default: state<=2’b00;

endcase

always @ (posedge clk or negedge rst_n)

if(Irst_n)

dout<=4’b0000;

else

case (state)

2’b00: dout<=4’b0001;

2’b01: dout<=4'b0011;

2’b10: dout<=4'b0111;

2’b11: dout<=4'b1111;

default: dout<=4’b0000;

endcase

The state device upper uses three-step-description way. One always

block is in charge of sending next_state value to state. One always block is in
charge of judging trigger and generating next_state. The third one includes
the descriptions of works to be finished by state device in each state step.
There are many advantages of this way: simple structure, better for timing
constraints, no combinational logic output, and better for controlling synthesis,
high reliabilities and maintains of the codes.

ISE provides users another special input way: state device input. This way

is more complex in inputting and the using range is very limited.

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

1.3.3 Experiment content

Design one state device which makes 8 LED on the development board
shinning in cycle.

1.3.4 Experiment result

See 8 LED on the development board turned on in cycle.

Experiment 4 Digital tube control

experiment

1.4.1 Experiment purpose

1. Learn digital tube working principles.
2. Achieve control of digital tube’s display by programming.

1.4.2 Experiment theory

Following is the digital tube appearance drawing:

C

o)

Digital tube displayer is the display device which is often used in digital
system experiment. Usually it displays decimal or hex numbers. Therefore we
have to decoding all binary numbers used in the experiment. Change them to
decimal or hex numbers. There are two kinds of digital tube displayer: common
cathode (CC) and common anode (CA). Development board uses CA
connection and high level is valid. Input signals are D0,D1,D2,D3,
corresponding 8 segments outputting are a,b,c,d,e,f,g,Dp. Their relations are
as following:

DO |[D1 |D2 |D3 |a b c d e f Dp

g
0 0 0 0 1 1 1 1 1 1 0 0

10

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

0 0 0 1 0 1 1 0 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1 0
0 0 1 1 1 1 1 1 0 0 1 0
0 1 0 0 0 1 1 0 0 1 1 0
0 1 0 1 1 0 1 1 0 1 1 0
0 1 1 0 1 0 1 1 1 1 1 0
0 1 1 1 1 1 1 0 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1 0
1 0 0 1 1 1 1 1 0 1 1 0
1 0 1 0 1 1 1 0 1 1 1 0
1 0 1 1 0 0 1 1 1 1 1 0
1 1 0 0 1 0 0 1 1 1 0 0
1 1 0 1 0 1 1 1 1 0 1 0
1 1 1 0 1 0 0 1 1 1 1 0
1 1 1 1 1 0 0 0 1 1 1 0

In the experiment, you have to attention to that each segment of LED has to
be corresponding to the program on the monitor.

There are 4 digital tubes on the development board which reuse 8 data lines.
It is easy to achieve if 4 tubes display the same value. If you want to display
1234, you may need to change the data line’s content. You have to find a way
to make 4 tubes display 4 contents separately. In many situations, to save 1/0
pins and internal logic source, we often use dynamic scanning to display.
Dynamic scanning uses hours theory and man’s persistence of version effect.
For example, one 4 bytes dynamic scanning monitor’s displaying cycle can be
divided into 4 periods:

Period 1------ —period 2------- —period 3------- —period4

T

Each cycle only strobe one byte data. In cycle 1, displays the first data. The
second cycle displays the second one... After scanned 4 periods, recycle by
order. If the scan speed is fast enough, it will make people feel 4 digital tubes
are displaying at the same time.

4 bytes scan digital monitor has 4 groups of BCD code (4 bytes) input lines,
8 pieces of 8 period decoding output lines and 4 strobing lines. In scanning,
choose one group data from 4 groups of BCD data. Decode them by BCD
shortness of breath decoder and then output. At the same time, 3/8 decoder
generates strobe signal. In this moment, the monitor is changed to the digital
codes to be output. Then, choose the next group of data, decoding and output.
Bit strobe is down by one bit correspondingly. Strobe the next digital code and
output it.

11

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

ans |\ /
ave —\ [
AN [
ANO \ /

mecoercort X pispa) pispz X pisp1) pispo X

1.4.3 Experiment content

1. Make four digital tubes display the same value, from 1 to f.
2. Make four digital tubes display different values, output 1234.

1.4.4 Experiment result

See the requested output result on the development board.

Experiment 5 Counter experiment

1.5.1 Experiment purpose

Handle the counters basic concept and implementation.
Write one counter program.

Display the process of counting by digital tube.

Change counting frequency. Watch for counting result.

A WODN -

1.5.2 Experiment theory

Like the divider, the counter is also one of the basic design ways in electrical
designing. We can generate many feature modules based on the counter:
Divider: actually, the divider is the clock level whose output is controlled by a
counter. When the counter is full, turn the output clock, or make the output
clock level equal to the certain bit level of the counter. In this way, we can
generate one clock after divided.
Frequency counter: the frequency counter is the normal measuring
instrument. It measures the signal frequency by count the signal pulse in unit
time. When frequency counter start to work, it will generate count permit

12

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

signal that is gate signal. The width of the gate signal is unit time, e.g. 1s or
10ms. Count the signal be tested in the valid time of gate signal, and then,
convert it to signal frequency. When the measurement is finished, you have to
lock save the counting value or leave some time to show the measurement
value. Before next measurement, clear the counter.

Macro generator: Macro generator can generate one or more specified
width Macros according to the requirements. There are many way to achieve.
Most of them are that generate one high level and start counting. When the
counter is full, lower the level. In this way, you can generate different pulse
width Macros by change the counting value.

There are many kinds of counters. Either plus counting or minus
counting is ok. When the counter is full, both clear up and keep the full state
are ok. The actual design has to according to the demands to do the
programming.

1.5.3 Experiment content

This experiment needs to design one counter and display the counting
process on the digital tubes.-

As the experiment required, the process can be divided into three main parts:
frequency dividing, counting and displaying. As the clock frequency provide by
development board is 50MHz which cannot be recognized by human eyes,
four digital tubes cannot display the huge number generated by such high
frequency. Therefore, we have to divide the 50MHZ first which can guarantee
the circle of counter’s each number is around 1 second.

The counter part is set up by several registers. The raising of each clock will
cause the number addition 1 in the register. The counter’s reset value is 0000.
When the counting reaches 9999, the counter returns to 0000 and restart the
counting.

Digital tube controlling sees experiment 4.

1.5.4 Experiment result

See the counting process of the counter on the development board.

13

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Experiment6 Button debounce

experiment

1.6.1 Experiment purpose

Be familiar with the development environment of ISE11.1;

Be familiar with the usage of development board;

Learn the operation principle of the button and the way of anti-shake;
Program and set an anti-shake circuit.

A WODN -

1.6.2 Experiment theory

If we intend to use the four SW buttons to do the counting input, we should
firstly know how many times the buttons have been pressed. In this case, we
can’t just detect if the button is pressed or not by using the rising edge of the
input clock as before. Supposed that the clock frequency is 10Hz after
frequency division, and we keep the button being pressed for one second, if
we simply detect it by the clock rising edge, the program will tell us that the
button has been pressed for ten times.

This circumstance also exists in our commonly used keyboard. We need
part of the circuit to prevent the above circumstance occur.

Therefore, in order to prevent shaking, we should detect the falling edge and
rising edge of the button, rather than detect if the button is pushed. For
example, when pressing the button, we should check the falling edge of FPGA
pin connected to the button, and the rising edge when releasing it. In this case,
we can count input according to the times of pressing and releasing,
regardless of how long the button is pressed.

1.6.3 Experiment content

This experiment is to design a debounce circuit which is used to check the
button’s input. Set a counter. The initial value is zero. Use debounce checking
circuit to check the button SW2'’s input. Each time we get bottom’s press or
release, the counter’s value is added 1. Show the counter’s value at the digital
tubes.

This experiment mainly is set up by three parts: button anti-shake, counting
and digital tube controlling.

14

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

1.6.4 Experiment steps

1. Set a new project;
2. Generate the source programs of anti-shaking button, counting, and
digital tube controlling separately;
"':"L"j sE_unjeounce

= EF xe3sl000-4£1256

(W% counter (E:/shiyan/sf_unjounce/counter. v)

debounee (E: fshipan/s6_unjounce/debounce. w)

gag (E:fshivan/sf_unjouncef=zeg. v)

3. Input a top-level file, and call the three modules mentioned above;

Elle' Source ¥izard

Select Source Type
Select source type, file name and its location

EMM File

% ChipScope Definition and Conmection File
E‘; Implementation Constraints File

J IF (CORE Generator & hrchitecture Wizard)
MEM File

Schematic

Fil :
User DNocument File name

¥erilog Module top
Verilog Test Fixture
VHIL Module

VHOL Library E:'testhsB_unjounce E
VHOL Fackage

VHOL Te=t Bench

Embeddad Frocessor

Location:

Add to project

x> [omen

See the changes in the folder after saving:
"'_:E"j sB_unjounce
= Ed xc3sl000-4£1E56
= ﬁﬁﬁ top [top. w)
HLXT 1 - counter [counter.w)
ALXT 2 - debeunce (debounce. v)
¥IXT 3 - =eg [(zez. w)
E top. ucf (top. ucf)

4. Integrate, layout, and route;
5. Download and debug.

1.6.5 Experiment result

Control the digital tube’s displaying by SW2. The displaying value is added 1

15

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

with every press.

Experiment 7 Buzzer control

experiment

1.7.1 Experiment purpose

1. Learn buzzer’s structure and working theory.
2. Learn to control buzzer to send different frequencies’ voices.

1.7.2 Experiment theory

Compared to control playing music by micro-processer (CPU or MCU), the
logic of playing music by pure hardware is more complex. If you do not use
powerful EDA tool or hardware description language, only use traditional
number logic, you will find it is really very hard to achieve even the simplest
circuit.

First, this experiment is used to find the different sounds of buzzers’ at
different frequencies on development board. See whether it is the same as the
following table. Then, do the programming. The buzzer sends the sounds do,

re, mi, fa,so, la in turn when clicks the development board.

do re mi fa SO la
frequency | 262 294 330 349 392 440
/Hz
circle 3816 3401 3030 2865 2551 2273
/us

Second, this experiment needs the program to control the buzzer on the
development board which used the VerilogHDL language. As we know, the
sounds frequency value of each note composing the music and the lasting
time are two basic elements to guarantee the music’s lasting displaying. The
details are as following:

cllkl

|-
1= spealkout

— tone index

tone maker spealer control

You can get the note’s frequency by the part speaker control as upper

16

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

picture shows. Speaker control is kind of frequency divider controller. The clk1
input the higher clock frequency (as 12MHz, 25MHz and etc). After dividing,
there will be speaking out output. It will be connected to the buzzer directly.

The lasting time of note is upon the different music spread and the lasting
beats. In upper picture, tone index is checkout table of notes. Input clk is the
lower clock (8Hz or 10Hz and etc). The checkout table searches the note to be
played by the “plus 1” order and send them to the module tone maker. The
tone maker here is the 8-bit binary counter (the highest value is 138). The
frequency is at 4Hz. In this way, the stay time of counting one number is 0.25S
which is equal to the four-four beat quarter note lasting time when the lasting
time of whole note is set 1 second.

Through the upper description, we can use the hardware to achieve different
notes’ frequency and lasting time. In this way, “Chinese Romeo and Juliet” can
be played consistently.

1.7.3 Experiment content

1. Use buzzer to make different notes sounds on the development board.
2. Make a program to play the “Chinese Romeo and Juliet”.

1.7.4 Experiment steps

Program and download on Xilinx ISE. Debug on the development board.

1.7.5 Experiment result

Hear the “Chinese Romeo and Juliet”.

Experiment8 LCD display control

experiment

2.1.1 Experiment purpose

1. Learn the control theory of char-LCD.
2. Handle the basic ideas and methods of driver designing by FPGA.

17

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

2.1.2 Experiment theory

1. LCD 1602 brief introduction:

There are two types of LCD screen: dot matrix and LCD type. Experiment
here uses LCD screen. It is character type can show 2 lines 16 characters.
LCD module uses 14-pin standard interface:

Pin 1: VSS is ground power.

Pin 2: VDD connects to 5V + power;

Pin 3: V0 is LCD contrast adjusting terminal. The contrast is weakest
when connect to “+” and is highest when connected to ground power. Over
high contrast will cause “ghost shadow”. During the use, you can adjust it by
one 10K potential regulator.

Pin 4: RS is register selection. Data register select when it is high level,

and command register select when it is low level.

Pin 5: RW is read/write signal. Read during the high level while write
during the low level. When both RS and RW are low level, you can write
command or show the address. When RS is low level and RW is high lever,
you can read busy signal. When RS is high level and RW is low level, you can
write the data.

Pin 6: E is enable terminal. When E jumps to low level from high level,
LCD module can do the commands.

Pin 7~14: D0O~D7 are 8-bit two-way data lines.

The character generating memory (CGROM) internal of the 1602 LCD
module has already stored 160 different dot-matrix character graphics, like
table 1 shows. These characters are: Arabic numbers, capital letters and low
case letters, commonly used symbols, Japanese Kana and etc. Each symbol
has one fixed code. For example: the capital letter “A” has the code
0100_0001B (41H) . During the displaying, the module shows the dot-matrix
graphic in the address in which way we can see the letter. In programming,
you only need to input the related character’s address, and the LCD will output
the corresponding character.

Following is the table of relationships between each character and

CGROM.

18

Eleckits Studio

http://www.eleckits.com

Skype: eleckits2011

/]

fz| oo | o0i0

i

ooil

o100

o101 0110 | €111 | 1010

MM M eG00

OiRAM |
(i)

(=3

=
-
1

R At) |

£23

1011

1100} 1%

=
(=]

L
]
|

=l Ny

XX X010

LT

MM 0011 4
MM X Xeltd

ts1

¥ OH K00

8l

I

OB

t73

Wik id|mi~F

M X111

(a)

X X 0 100

(1)

=]t

3 X 1001

(2)

1
Vo e | mn o | om | | cn e e

| l=|m |wlmis |~ ==

-

X X X1010

LL U

| =€]| |m]|C

Ed e 1)

{4

X% W X 1100

{3}

® |

Jlg|T]e

XXX X1

(%)

M |

(7

e

+'.;;;:-¢E-|-tw Mlm|Mje o] el

-
w

TR %R

[—-.- |+ |- Vimin]es n --

(8}

"VF.I"l‘

Qz::r;nu—ﬂﬂﬁﬂuﬁzh

pla fl=|wl=|=|=|m |=]|® |[&ln o=
tl=l=l=|=l= =7 | |=]=}=|= |~ |=
ol TCR TR P A S S e] P B =

elalnlvlslulalolalel=|u]e| ==

qébJ\.!n-:-—-hhlt'-}-rqi

N
e d 11 E SE -1 E RO

n

Table 1 CGRAM character and address chart
2. LCD driver designing requirements:

LCD driver's design has to clear the LCD operation

command,
following:

*® Eichog

Er 4 RS |R/W| D7 | D6 | D5 | D4 | D3 | D2 | D1 | Do

/ HER 0] o 0 0 0 0 0 0 []
2 etrag el . 0 0 0 0 0 0 0 0 1 »
% B AR 0 0 0 0 0 0 0 L | yp -8
[BRTF/ s H 0 0 0 0 0 0 1 D C B
3 AR TR AL 0 0 0 0 0 T=liS/c| R =, E
& RIEE 0 0 0 0 1 |DL| N F * »
7 BFEF RS AL 0 0 0 3 PR EFE AL (AGG)
£ BHEFAILE 0 0 1 | BRI RHAL (ADD)
j iR BbhE 0 1 | BF | H¥sibikAc
i” E ¥ 3 CGRAM 3 DDRAM 1 0 | EENE
0" M CGRAM &k DDRAM ¥ 1 1| A%

Table 2 LCD command table

command programming. (Note: 1 is high level and 0 is low level).

reset to position 00H.

Command 2: cursor reset. Cursor returns to address 00H.
Command 3: cursor and displaying mode set I/D.Cursor moving direction

Command 1: clear displaying. Command code is 01H and the cursor is

is high level right moving and low level left moving. S: all

characters on the screen are moved left or right. High level

means valid and low level means invalid.

as

All of its read/write operation, screens and cursor operation are finished by

Command 4: displaying switch controlling. D: control overall display’s on
and off. High level means display of on and low level means

display of off. C: control cursor’s on and off. High level means

cursor exists and low level means no cursor. B: control

19

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

whether the cursor flashing or not. High level means flashing
and low level means no flashing.

Command 5: cursor or displacement shows S/C. Moving displays
character during high level while cursor in low level.

R/L: character or cursor moving direction. High level is right
moving and low level is left moving.

Command 6: feature setting command. DL: in high level is 4-bit general
line, and in low level is 8-bit general line. N: single line
displaying in low level and double lines displaying in high level.
F: in low level shows the Dort-matrix 5x7, while in high level
shows 5x10.

Command 7: character generator RAM address set

Command 8: DDRAM address set

Command 9: read busy signal and cursor address. BF: is busy signal.

High level means busy. At this time, the module cannot
receive command or data. If it is low level, means free.

Command 10: write data

Command 11: read data

3. FPGA driver circuit design:

The displaying features to be achieved here are as following: use 5*10
Dort-matrix,; double lines displaying; the first line shows “Welcome to SOLID!”;
the second line shows “SOLID!”. As one line can only show 16 characters, the
screen has to be left-moving displayed.

There are mainly two modules in this designed driver program:
oneischar_ram whose main feature is to output the addresses in CGRM
(character generator register memory) of the related characters’ according to
the input addresses. In LCD controlling displaying, user only needs to provide
related character’s address to display it. In char_ram, firstly, you need to set all
characters’ related addresses (according to upper table), then define new
address of characters to be used to select output. Another module is LCD’s
driver module Icd. This module is used in driver Ilcd normal working. LDC is a
slow displaying device. Therefore, the clock must meet the requirements. Here
the clock circle got by frequency division of 50MHz is around 100us (about
10HZ) to meet slow displaying requirements. LCD driver is achieved by one
status device. State picture is as following:

20

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

LCD driver circuit status picture

Detailed processing is as following:

Powered and reset, the system enter IDLE statue.

First enter SETFUNCTION status. Do command 6 (do command here
means write relate control character to data terminal, and set RS and R/W).
Set bit numbers of general line and the kind of Dort-matrix to display. After one
clock circle (around 100us), enter SWITCHMODE state. Do command 4. set
the switch of overall display, switch of cursor and whether the cursor is
shinning or not. When the setting is finished, enter CLEAR status and do
command 1. Clear the screen. Then, enter SETMODE status and do
command 3. Set whether the characters and cursor is moving and moving
direction. After it, enter SETDDRAM status and do command 8. Set the initial
address of DDRAM. Here set the first line displaying internal address:
1000_0000. The highest bit 1 is reserved bit and following 7 bits are initial
address. After it, enter WRITERAM status. Write the address of the character
to be displayed into DDRAM. Here the first line displayed is “Welcome to
SOLID” (one line is only can show 16 characters) When the displaying is
finished, re-enter the SETDDRAM status. Set the initial address of the
displaying in second line: 1100_0000. In second line, shows: “SOLID!” And
then, enter SHIFT status. Do command 5. Set the character left moving. In
moving process, the first line shows “Welcome to SOLID!”"completely. Then,
keep cycling in IDLE and SHIFT. Keep the characters in left-moving displaying
status.

21

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

2.1.3 Experiment content

This experiment will read data form ROM and display them through LCD.

2.1.4 Experiment steps

1. Design general feature module. Input verilog design file which can
achieve LED displaying character.

2. Complication debugging passed.

3. Download program to experiment board. Debug successfully.

2.1.5 Experiment result

See the first line in LED shows: “Welcome to SOLID”, & 47 £ 7~“SOLID!”
Then, left-moving display “Welcome to SOLID!in cycle.

Experiment9 VGA display control

experiment

2.2.1 Experiment purpose

1. Learn CRT monitor working theory.
2. Learn VGA interface timing control.
3. Write a program to control the monitor.

2.2.2 Experiment theory

This experiment requires using verilogHDL to write an outputting program
which can control the VGA port on the experiment board. Control the monitor
through experiment board to display the color in the finished programs. To
guarantee the monitor working normally, you need to know the structure of
VGA port firstly, then, the CRT monitor working principles and the timing
relationship of VGA port outputting signals.

1. VGA port structure:
VGA port is the video output port. It includes 15 pins as following:

22

Eleckits Studio

http://www.eleckits.com

Red

Skype: eleckits2011

Pin5 -

2 ~Pin 1

Pinmaz%ﬂﬂﬂﬂﬂ, ;
g o oo ot Ping
Clooooo C'Z

. =
Pin 15

27040

Pin 11

b2

S
GMD

C ATATAY g R
e 1 . 2700
reen

y Wiy oG
-

' - 2700

1z Blue
. ATATAY d B
g * Horizontal Sync

13 U HS

41—

2 Vertical Sync

14 O ys

In common connection ways, there are 5 most important pins in 15. They
include 3 basic color lines red, green, blue and two control lines (level and
vertical). We can display 8 different colors in the screen as following:

red green blue Display color
0 0 0 Black

0 0 1 Green

0 1 0 Blue

0 1 1 Blue green

1 0 0 Red

1 0 1 Magenta

1 1 0 Yellow

1 1 1 White

On the development board, each basic color line (red, green and blue) is
controlled by three input lines. These three control lines have different
resistances. Under these three input lines controlling, the three basic colors
(red, green and blue) are divided into 8 levels separately. Theoretically, the
VGA interface on the development board has 9 color control lines in total which
can display 512 different colors.

2. CRT monitors working theory:

Inside of the monitor, the current flows through the coil and generates the
magnetic field. In this way, it control electron beam flow the monitor surface,
from left to right in level and from up to low in vertical. Following picture is an
example of level direction. Only in the positive direction flow (left to right, up to
low), the monitor works. When the electron returns to monitor’s left or up, the
monitor doesn’t work.

23

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Retrace: Mo
Stable current ramp: Information is information
: dizplayed dunng this time ' is displayed
: v dunng

this time

Total time

display time . retrace time

3. VGA driver program’s FPGA achievement:

Driver program mainly finishes the following tasks: generate the synchronize
signal (line, row) according to the VGA timing requirement, and output the data
of color to be displayed in specified time (pixels valid period) to RGB.

In different displaying modes and refresh frequencies, detailed synchronize
signals (front, behind, synchronization signal) has different valid pixels. You
have to set according to pixels clock frequency. Like upper table:21800*600,
60HZ, pixel clock is 40M, pixel clock = (800+40+128+88) * (600+1+4+23)
*60=40MHZ. In designing, you can choose suitable display mode according to
system clock frequency.

2.2.3 Experiment content

This experiment mainly has two parts: one is displaying color lines
required by experiment in the monitor VGA which is simple. Another is to
simulate a Ping-Pong game in VGA monitor. Use keys on development board
SW1, SW2, SW3, SW4 to control rackets and jumper SW6 to control balling
status.

The most important thing in programming to control VGA is to learn the
timing and working mode of VGA interface. The first experiment is to show
some color belts on the monitor. Therefore, giving the different RGB value
(different currents) according to different areas of the data in scanned
registers’ when the monitor is scan-displaying will be ok. For example, we
have to show a vertical red belt in the left most of them monitor. As the monitor
is progressive scan, we can judge whether the data value in the register is less
than a fix value. Set R be 1 and GB be 0 when meet requirement, or all is set 0.

Ping-Pong program is more complex. You can program a VGA controller
first. And display the table, rackets and ball by controlling this VGA controller.
At last, write the programs of balling and score recording

24

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

2.2.4 Experiment steps

Set up a new project.

Set up source file and programming
Integrate, layout, and route;
Download and debug.

A ON -

2.2.5 Experiment result

1. You can see the color belts in the monitor according to the experiment
requirements.
2. You can play Ping-Pong game on the monitor.

Experimentl0 Serial communication

experiment

2.3.1 Experiment purpose

1. Learn RS232 interface agreement;
2. Program to achieve the communication between serial and PC.

2.3.2 Experiment theory

1. Serial description:

RS-232-C standard is initially the remote communication connection data
terminal equipment (DTE) and data communication equipment (DCE) to
customize. Therefore, this standard’s set up doesn’t consider the application
requirements of the computer system. However, now days, it is widely used as
the connection standard between the computer (computer interface) and
terminal or peripheral proximal. Obviously, some rules of this standard are
different from computer systems, and some are conflicts. With the knowledge
of this background, it is easy for us to understand the not compatible place
between RS-232C and the computer.

Second, the “send” and “receive” mentioned in RS-232C standard, are
defined at the position of DTE instand of the DCE. As in the computer system,
messages sent between both of the CUP and I/O device is based on the DTE,
both parties can send and receive.

25

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

The full name of RS-232C standard (agreement) is standard EIA-RS-232C .
Here, EIA is stand for Electronic Industry Association, RS is stand for
recommended standard, 232 is ID number, C stands for the latest adjustment
of RS232 (1969) .

2. Serial electrical standard:

RS232 uses negative logic instand of TTL level interface standard. That is
when the logic is "1" the range is -3 V~-15V; the logic is "0" the range is +3
V~+15V; EIA-RS-232C defines to the electrical features, logic level and all
kinds of signal line features:

On TxD and Red: logic 1(MARK)=-3V~-15V; logic 0(SPACE)=+3~+

15V;

On the control lines as RTS. CTS. DSR. DTR and DCD: signal valid
(connected, ON, positive voltage) =+3V~+15V; signal invalid (disconnected,
OFF, negative voltage))=-3V~-15V

EIA-RS-232C which is different from TTL (uses high / low level to show
the different logic status) uses positive / negative level to show the logic status.
Therefore, to connect to the computer interface or TTL devices, you have to
change the level and logic between EIA-RS-232C and TTL circuit. To achieve
this, you can use discrete components as well as IC. Here, what we use is
MAX3232 changes the signal sent/received by the interface to TTL level.

3. Serial communication agreement:

“Serial communication” means using one signal line between peripherals
and the computer (more control line needs if grand line asked). Data are
transformed in one signal line bit by bit. Each bit gets one fixed time period.
As following picture shows:

|IJU|D1I]JZ|D3|D4|US|D6|DT| I

> Tl

This communication way uses fewer data lines which can save the cost in
long distance communications. Of course, the speed is lower than parallel
way.

The transform between CPU (FPGA is equal to one CPU) and interface is
parallel way, and be serial way between peripheral and interface. Therefore, in
serial interface, there must be “receiving displacement register” (serial-parallel)
and “sending displacement register” (parallel — serial)

During the data inputting, data enter interface’s “receiving displacement
register” bit by bit from peripheral. When “receiving displacement register” has
finished the receiving bits of 1 character, the data enter “data inputting register’
from “receiving displacement register”. CPU reads the received symbols from
“data inputting register”. (Parallel reading, D7~DO0 are read to accumulator at
the same time). The speed of “receiving displacement register” is decided by
“receiving clock”.

During data output, CPU send the symbols to be output (parallel) to “data

26

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

outputting register”, the content of “data outputting register” to “sending
displacement register”. And then, the “sending displacement register” sends
the data to peripheral bit by bit. The speed of “sending displacement register”
is decided by “sending clock”. The “controlling register” in interfaces is used to
accommodate all controlling message sent to the interface by CPU. These
messages decided the working mode of the interface.

The circuit which can finish “serial-parallel” exchanging as described before
is called “common asynchronous receiver transmitter” (UART: Universal
Asynchronous Receiver and Transmitter) . It includes doubt buffer data
sending register, Parallel-serial changing equipment, double buffer data
inputting register, Serial-parallel chaning equipment.

RS232 communication agreement’s basic structure
Start bit is low and stop bit is high.

Star: Bt Dats Bits Stop Bits)
Baud rate is 300~115200 bit/s, 8bit data bit, one or two bits stop bit, odd parity,
even parity or no parity bit.

2.3.3 Experiment content

This experiment needs serial debugging software, Baud rate is 9600,
sending/receiving data.

2.3.4 Experiment steps

Set up a new project.
Set up source file and programming
Integrate, layout, and route;
Download and debug.
5. Use serial line to connect PC and development board, open the serial
debugging software and the Baud rate is set 9600.

A WON -

2.3.5 Experiment result

Achieve receiving / sending data by the serial debugging tools. For example:
send 45, and receive 45

27

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Experimentll PS2 interface control and
display experiment

2.4.1Experiment purpose

1. Learn PS2 interface agreement.

2. Learn the keyboard working theory.

3. Write program on the development board to achieve read the keyboard
inputting message through interface PS2.

2.4.2 Experiment theory

This experiment is to write a program which can achieve PS /2 port
features. PS/2 keyboard fulfills Two-way synchronization serial agreement, In
other words, each time of send one bit data in data line and pulse in clock line,
it can be read. Keyboard can send data to host. Host also can send data to
devices. But the host always has priority in general lines. It can inhabit the
communication from keyboard at any time if the clock is down. This experiment
mainly is to achieve the data transmission from keyboard to the host. First of
all, we have to know the PS/2’s structure and pins features.

Plug Socket Pin

1—data

2—not achieve, reserve

3—porwer ground

4—power, +5V

5—clock

Plug Socket 6—not achieve, reserve

There is only one data port in upper table. To distinguish many keys, one
high-efficiency distinguish way is needed. Keyboard processor spends a lot of
time to scan or monitoring keyboard matrix.|f it finds some keys are pressed
released or hold the keyboard, it will send message pack of scan codes to the
computer. There are 2 kids of scan code: “pass code” and “breaking code”.
When one key is pressed or hold, it will send “pass code”; when one key is
released, it will send “breaking code”. Each key is distributed the only “pass
code” and “breaking code”. In this way, the host knows the exact key by
searching the only scan code. The “pass code” and “breaking code” of each
key composite the scan code set. Following pictures includes the scan codes
of most keys on the keyboard:

28

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

S EEEE EEEE B
e 1) e) 5 | o 5o U o 5 [

A MMHBHMEH R

K |FJfﬂ

EWRHHHRHHBENSD
Bl AN H A

Cirl | Alt
14 11

| Space]

Al Ctrl
20

E011 E014

When the key is released, the keyboard will put “FO” in front of the scan
code as the release signal. At the same time, some keys are extended keys.
Put “EO” in front of their scan codes as beginning. When this kind of key is
released, it will append “EOFO0” to the scan code.

Let us know how signal inputs through keyboard by PS/2 port’s data line.
First, the keyboard will check whether data line and clock line are high. Only
both of them are high, you can write data. The data send from keyboard to host
can be read at the clock signal’s falling (clock changes from high to low).

Keyboard mainly uses the serial agreement that each frame has 11bits:the
first bit is start, be “0” forever; following 8 bits are data bits, lined from low to
high; following is odd/even parity bit; last is ending bit, be “1” forever.

ELDEK' ||||| |
pata_ A A X A X 4 A N XY

START
DATAD
DATA1
DATA2
DATA3
DATA4
DATAS
DATAB
DATA7Z
PARITY
STOP

2.4.3 Experiment content

This experiment achieves the controlling of keyboard, LCD, RS232 and etc
by programming the development board. Display the keyboard input data on
the LCD, or the PC super terminal by RS232.

2.4.4Experiment result

Display the input characters on LCD.

29

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Experiment12 USB interface read/write

control experiment

2.5.1 Experiment purpose

1. Learn USB interface working theory.

2. Master CY7C68013 working timing.

3. Write the program to control the USB on the development board to
read/write data.

2.5.2 Experiment theory

EZ—USB FX2 from Cypress Semiconductor is the first microprocessor
integrated USB2.0. It integrates USB2.0 transceiver, SIE (serial interface
engine), enhanced 8051 microcontroller and programmable peripheral
interface. This original structure of FX2 permits the transmit rate to reach
56Mbytes/s that is the maximum belt width of USB2.0. In FX2, the intelligent
SIE can hard process many USB1.1 and USB2.0 agreements to reduce the
developing time and guarantee the USB’s compatibility. GPIF (General
Programmable Interface) and main/minor ports FIFO (8 bits and 16 bits data
general line) provide simple and seamless connection interfaces to ATA.
UTOPIA. EPP. PCMCIA and DSP.

CY7C68013 integrates following features:
e USB2.0 transceiver, SIE (serial interface engine), and enhanced 8051
microprocessor.
e Software running: 8051 starts from internal RAM, and can with the help
of following ways to load programs:
(1) download through USB;
(2) load from EEPROM,;
(3) through external storage device.
e Four programmable BULK/INTERRUPT/ISOCHRONOUS ports;
You can choose two, three or four buffer.
e 8 bits or 16 bits external data interface.
e through programmable interface (GPIF)
(1) connect to parallel port directly, 8 and 16 bits.
(2) programmable waveform descriptors and configuration register.
(3) support several Ready input and Control output
e integrate standard 8051 core and has following enhanced features:
(1) can reach 48MHz clock.
(2) each command gets four clock circle;

30

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

(3) two USARTS;

(4) three timers/ counters;

(5) expanded interrupt system.

(6) tow data pointer.

e 3.3V power system;

e intelligent serial engine (SIE) ;

e Vector USB interrupt

e Independent data buffer for SETUP and DATA pack control transmit.

e integrates 12C controller, running speed can reach 100 or 400KHz;

e Four FIFO, can connect to SIC, DSP and ect seamlessly.

e Professional FIFO and GPIF auto vector interrupt.

e Can be used in DSL Modems. ATA interface.camera. Home PNA. WLAN.
MP3 player, internet and ect.

USB starting way and enumerate:

When powered, the internal logic will check the first character (0xCO or
0Xc2) of the EEPROM which connected to the I12C general line. If it is 0xCO,
it will use VID/PID/DID in EEPROM to instand internal storage value. If it is
0xC2, the internal logic will load the content of EEPROM to internal RAM. If
not find EEPROM, FX2 will use internal storage’s descriptor to describe the
enumerator. FX2 default VID/PID/DID is 0x04B4/ 0x8613/0xxxyy.

When the first time insert the USB, FX2 will enumerate and download
firmware and USB descriptor list by USB cable automatically. Then, the FX2
will enumerate again. This time, it mainly makes the definition of the device by
download information. These two steps are called re-enumeration. Once the
device is inserted, it works.

Program / data memory
e Internal data RAM

The internal data RAM of FX2 are divided into three different areas: LOW
128. Upper 128 special feature register(SFR) room. Low 128 and upper 125
are common RAM while SFR includes FX2 controlling and status register.
eExternal program memory and data memory.

FX2 has 8K chip RAM which locates in 0x0000—0x1FFF; 512 bytes
Scratch RAM which locates in OXEOOO—OxE1FF. Though physically, Scratch
RAM locates in the chip, it can be found as the external RAM by firmware.
FX2 keeps data address space 7.5K (0xE200—O0xFFFF as controlling /
status register and port buffer.

Note: only data memory space is kept, program memory (0OxE000—OxFFFF)
isn’t. Port buffer FX2 includes 3 64 bytes port buffers and 4K space which can
be configured to different ways buffers. 3 64 bytes buffer is EPO. EP1IN and
EP10OUT. EPO is used as controlling port which is two-way port and can be IN
or OUT. When it needs to control transit data, FX2 firmware read / write buffer
EPO. But 8 SETUP byte data won'’t appear in the 64 bytes EPO port buffer.
EP1IN and EP10UT use the independent 64 byte buffer. FX2 firmware can
configurate these ports to be BULK. INTERRUPT and ISOCHRONOUS

31

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

transmission way. These 2 ports only can be visited by firmware just like
EPO.It is different from big port buffer EP2. EP4. EP6 and EP8. These four
port buffers are mainly used to do the data transmission to chip or out-chip
which doesn’t need the firmware’s participation. EP2. EP4. EP6 and EP8 are
high belt width, big buffers. They can be configurated in different ways to
meet the belt width needs.
External interface FIFO
Big port buffers (EP2. EP4. EP6 and EP8) are mainly used to do the
high-speed (480Mbits/s) data transmission. It can set up the high speed data
transmission by the seamless connection between FIFO data interface and
external ASIC and DSP processers. It has common interface: Slave
(subordinate), FIFO (external main) or GPIF (internal main), synchronous /
asynchronous clock, internal or external clock and etc.
Interrupt source:
FX2 interrupt structure enhances and expands part of the interrupt source
based on the standard 8051 MCU. Following table shows the interrupt
source:

FX2 interrupt Interrupt source Interrupt vector Priority
IEO INTO Pin 0x0003 1
TFO Timer0 Overflow 0x000B 2
IE1 INT1 Pin 0x0013 3
TF1 Timer1 Overflow 0x001B 4

RILO&TIO USARTO Rx & Tx 0x0023 5
TF2 Timer2 Overflow 0x002B 6

Resume WAKEUP/WU2 Pin 0x0033 0
RIL1&TI_1 USART1 Rx & Tx 0x003B 7
USBINT USB 0x0043 8
[2CINT I2C BUS 0x004B 9
IE4 GPIF/FIEOs/INT4 0x0053 10

Pin
IES INT5 Pin 0x005B 11
IE6 INT6 Pin 0x0063 12

Among them, 27 USB applicator share USB interrupt and 14 FIFO / GPIF
source share INT4.
Detailed chip introduction and using description see the chip user manual.

2.5.3 Experiment content

This experiment is to set up the data transmit between FPGA and PC by
USB interface which includes data reading and data writing. Testing way see
the testing file.

32

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

2.5.4 Experiment steps

All experiments below are based on default user has installed the
development pack EZ-USB. If the user hasn’t done this, please install the
EZ-USB provided in the disk and install Keil to write firmware program.
And, these two samples will use VC++6.0(or VC.NET). User has to confirm
the VC has been installed already.
€ BULK data transmission experiment:

Experiment steps are as following:
1. first of all, connect the development board to PC by USB line.
2. open /Cypress/EZ-USB Control Panel

"ﬁ CYOress >|
3

‘ i DAEMON Tools

& EZ-USE Control Panel |

DF 542 SIEMaster

You will see following window:

EZ-IISB Control Panel - Ezush-0
Eile Edit Wiew

| s[n(el &t

Options Tools Window Help

Open Al | Target |F)(2 v| |
| P5ena| Devies [Ezush-0 v [| oson| St |

GetDeul GetConfl GetF’ipesl GetStringl Download..l F!Q-Loadl EEPHDM..l UHBStatl HuLnl UM |

|Get Pipe Info

vendFea| Req [0xAZ | value [0x0000 | index[OxBEEF | tength[16 | bir [1IN | HexBytes
tsoTens | pipe | | Packets [128 | ses [16 | Buffers [2 | Frames / Buffe
M Fipe. | | tength |E=1_[Hex Bytes [5

ResetPipel AbortPipel FiIeTrans..l Pine | j ‘ ml Intetface EI AltSetting m

EZ-USE Control Panel — built 11:31:58 Sep 17 2002
Get Pipelnfo
Interface Size 16

For Help, press F1

As the upper picture, the USB has been connected to PC. If following

dialog comes out:

33

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

EzMr: e, [x]

Mo Cwpress USE devices detected,
' You may need to plug in {or install) ISE devices,
Ise COpen All Devices ko refresh display.

Means there is no connection. Please check whether the USB line has
been inserted and the development board is powered.

1. Click download and find

The file Bulk_Loop_Test.hex in s12_usb\Bulk transmission test \Keil
firmware project\Bulk_Loop_ Test\. Click download. When the

download is finished, you can hear the “ding” of the USB

disconnecting firstly.

k=d E2-USB Control Panel - [Ezusb-0]

E'_Q:rﬁile Edit Yiew oOptions Tools ‘Window Help

o %@ él?l‘ Open &l | Target [F2 -| H
[Get Pipe Info | #sena| Device [Ezush-0 v| [EEal | Lessren| e |

GetDeuI GetConfl GetF’ipesl GetStringI Download..l He-Loadl EEPHDM..I UHBStatI Hg|_|3| Rk |

vendFea| Req [0xA2 | velue [0x0000 | mmex[0xBEEF | Length[16 | o [1IN =] HexBytes [B0 47 05 80 00 01 00 ~ ‘

IsoTransl Pipe | j Packets |1 28 | Size: |1ﬁ | Buffers |2 | Frames | Buffer ‘
Eulk { Int | Pipe | j Length (64 Hex Bytes |5 j B”""-""Pl |
ResetPipeI P.bortPipel FiIeTrans..l Pipe I j ‘ St IFacel Interface ||] | p,|t53tting||] ||

EZ-USE Control Panel — built 11:31:58 Sep 17 2002
Get Pipelnfo
Interface Size 16

- ; . Anchor Download

Device Descriptor: I

blength: 18 s . - = i .
EDeeTit otrype: 1 HIHFEEND): [Bulk_Loop Test x| & cf
bedUSE: 512 = ;

bleviceClass: 0O=ff

bleviceSublClass: 0O=ff

bDeviceProtocol: O=ff

bHazPacketSizel: 0=x40
idVendor: 0O=4bd
idProduct: 0O=xB8613
bedDevice: 0xal0l

iManufacturer: 0=0

iProduct: 0=0

iSeriallumber: 0=0 .

bHumConfigurations: 0=l it @) IBulk—LWP—TeSt' hex T3 @ I

JHZER () [HexFiles (. hex) |

HRi

4. When the download is finished, open

The VC project in s12_usb\Bulkt transmission test \VC project \bulkloop.

Running interface is as following:

34

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

ypress Bulk Loopback .: IZ‘ O E

WIERMH - built 14:49:27 Dec 7 2007 ~ Endpaint Select

* First Pair ¢ Out Only
™ Select Pair In Only

I Out Pipe e
Get Pipe List |
I I Pipe

— Data Pattern

I2 Start Walue/Seed

" Incrementing Byte

{" Random Byte

" Incrementing DWORD
¢ Constant Byte

IB-| 3z Tranzfer Size

[~ Werbose Display

¥ Stop on Emor

¥ Werify Data

™ Increment Packet Size

IEZUSE-D Device ID Pazs ID Errorz Clear |

Set Out Pipe: 2, In Pipe: 6, First Pair, Start Value/Speed is 0, incrementing

Byte) Transfer Size is 512,as following

Cypress Bulk Loopback .: E‘ |

FIEEH — built 14:49:27 Dec 7 2007 r Endpoint Select

& First Pair ¢ Out Only
™ Select Pair ¢ InOnly

2 Out Pipe o
Get Fipe List |
& I Pipe
— D ata Pattern

IEI Start W alue/Seed

% |ncrementing Eyte

" Random Eyte

™ |ncrementing DWORD
{" Constant Byte

|5'I 2 Tranzfer Size

[~ Werbose Display
¥ Stap on Emar

v ety Data
[Increment Packet Size

IEZUSB-D Device ID Pazz |0 Errorz Clear |

Start | Stop |

Click start and the result comes:

35

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Eypress Bulk Loopback: ou [{[={ER
WIEEH - built 15:24:07 Dec 7 2007 ~ Endpaint Select
IN FIFE = 2 QUT PIFE = 0 ¢ FirstPair ¢ Out Only

Read from Inpipe success

Fead data has written to E:“~BulkReadData. tzt
Write to Outpipe success

Write data ha=s written to E:“BulklriteData txt

IEZUSB-D Device I'l Pasz IEI Ermors Clear |

IE_ In Pipe

" Select Pair € In Only

|2_ Out Pipe

Get Pipe List |

— Diata Pattern

IEI Start Value/Seed

% |ncrementing Eyte

" Random Eyte

" Incrementing DhwORD
" Constant Buyte

|51 2 Transfer Size

[~ Werbose Display

¥ Stop on Emar

v ety Data

[~ Increment Packet Size

i sStep |

You can see, the program stores the sending data and receiving date into

two files.

Open these two files and see the corporations:

3 BilkRE
MHHE dRIEE) AT
EEW g

L =T - = Ty I =L L

BData.br...[= |[O][X]| B BulkwriteData.tst ... [=][O][X]
IHHE fREEE AETD
=& FERhH)

=
b

G0 = O WA Ca M-k

Data are completely the same. You can also choose random bytes that are

Random Byte. Results are as following:

36

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Eypress Bulk Loopback .: IZ‘ |

WIEEH - built 15:24:07 Dec 7 2007 r~ Endpoint Select

éH EIlf:‘E = % OUT PIPE = 0 ' First Pair € Out Only

=a rom Inpipe success q

REead data ha=s written to E:~BulkReadData . t=t " Select Pair £ In Only

Write to Outpipe success |2 Out Pipe

WUrite data ha= written to E:“BulkWriteData. t=t Get Pipe Listl
IB In Pipe
— Data Pattern

I2 Start Walue/Seed

" Incrementing Byte

¢ Fandom Bute

" Incrementing DWORD
" Constant Byte

|5-I 2 Transfer Size

[~ Werbose Display
¥ Stop on Emor

[V “erify Data
™ Increment Packet Size

Stop |

IEZUSB-D Device I'I Pazs ID Errorz Clear |

Compare two files as following:

- [O|x]| P& BulkwriteData.tt ... |- |0][%]

THEHE #iE(E) BT B #FEE B
HEN FERIH) HEN FEBIH)
45 a lys -
32 32

134 134

121 121

Ly Ly

194 194

25y 25y

63 63

289 289

140 140

181 181

29 29

108 108

oy oy

153 153

165 165

117 117

159 159

2 2

33 33

31 31

The result shows firmware program and VC program designing are
correct. They can finish BULK transmission accurately. User can adjust

them on the actual needs.

37

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

€ Slave FIFO mode data transmission experiment
Steps are as following:
1. Open ISE project;

The project files s12_usb.ise in s12_usb\SlaveFIFO mode data
transmission test \ISE project\3s1000_slavefifo

F—‘-j =12 _ush
= £ %c3s1000-4£4256

= ﬁﬁﬁ top_slawve fifo_wr (top_slawe fifo_wr. v

gen_cllkdl - gen_clld0 (zen_cllkd0. w)

slavefifo_wr — slavefifo_wr (slavefifo_wr. w)
E top_slawve_fifo_wr. ncf (top_slawe_fifo_wr. ucf)

Download top_salve_fifo_wr.bit file to FPGA
2. Open Cypress\Control Panel, and download
s12_usb\SlaveFIFO mode data transmission test \Keil firmware
project\Slave_FIFO_rd_wr\Slave FIFO_rd_wr.hexfile
3. Open VC project:
In s12_usb\SlaveFIFO mode data transmission test \VC.NET project

\ibis_usb, the interface is as following :

4| FaAma = ibis_ush,
lj[ﬁ:(ﬁ) 4 HE RERNH)
OD=E =

s UM

38

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Click process\read FIFO and get following result:

RS E 047807 s
IiE A1E B FEEh

DEEl =228 7

o

AhéE [4

You can see the gradient stripes which prove the write timing of FPGA
program design is correct. And you can see the read time in the title bar.
This program can achieve lasting reading. Each time of read an image,

the lights on development board are on/off alternately.

Here, only provide a very simple sample for user to study and using. User can
do the adjustment on this base according to the actual needs.

2.5.5 Experiment result

Achieve the USB communication between FPGA and PC. And check the
communication correctness on the PC. The details of EZ-USB are in the

certain files in the provided project folder.

39

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Experiment 13 SRAM read/write control

experiment

3.1.1 Experiment purpose

1. Learn SRAM memory structure
2. Handle SRAM memory read/write timing;
3. Write a program to control the SRAM read / write

3.1.2 Experiment theory

The SRAM chip used on the development board is IDT71V416S,
The external package and internal structure are as following:

A0 [1O a4 —3 a17
a1 L 2 43 3 a6
A2 —] s 42 B a1s
a3z [C3 4 41 —1 ©E
Ara C 5 20 3 BAE
s C s 30 1 BLE
rool—] 7 38 —1 vo 15
o1 C] s 37— vo 14
ro2C o 36 [—1 vo 13
ro a3 [10 35— vo 12
wop T 11 S044-1 34 1 vas
ves [12 SO44-2 33 =3 voo
voal—] 13 32 I vo 11
vos T 14 31 = vo 10
roes] 15 30 —1 1o 9
rov] 18 20 1 vos
weE 17 28 F— N
as [s 27 1 A4
as [—] 190 26 1 a13
a7 [20 25— Al2
Az [— 24 24 1 a1
A [oo 23 —1 A10

40

AD- AT

o
mi

m
=
m

Eleckits Studio

DS

Ot
Enakie
Buffer

Address

http://www.eleckits.com

Buffars

Chip
Salect
Suffer

Wiite

Row /! Colurmn
Decoders

Skype: eleckits2011

Enable
Buffer

4,194, 304-bit
MMemory
Array

Sense
Amips
and
Wite
Drivers

i

)
5

Byte
Enable
Buffers

D,

= >

3624 drw 01

SRAM is the easier reading /writing controlled way in all memory kinds
which means its reading / writing timing is easier. Details are as following:

(1) Read timing:

ADDRESS

X - X
AN TTTHT7
AN - 7777

&l

AN

DATAQUT

7

— tags @

torz ™

—— foHz (@

10 LS

«— feHz Y

DATAouT VALID

41

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

READ CYCLE

RC Read Cycle Time 10 o 12 - 15 = ns
thd Address Access Time - 10 - 12 - 15 ns
s Chip Select Access Time - 10 - 12 = 15 ns
oz Chip Select Low to Qutptt in Low-Z 4 - 4 - 4 - ns
wchd” Chip Select High to Output in High-Z - 5 - b = 1 s
10E Output Enable Low to Output Valid - 5 -) = 7 ns
Ukl Output Enable Low to Ouput in Low-Z 0 — 0 - 0 — ns
" Ouput Enable High to Output in High-Z - 5 . b = 1 M
1oH Output Hold from Address Change) - 4 - 4 - ns
BE Byte Enable Low to Output Valid o 5 -] = 7 ns
e Byte Enable Low to Ouiput in Low-2 0 -] - 0 = ns
e Byte Enable High to Output in High-Z - 5 : B = 1 ns

e When do the reading, you have to set the signal #WE high.
e The address of the data to be read has to be gave following the signal #CE
falling at the same time or prior to it.
e After gave the address and read controlling signal, it can read the data after
period of time (normally is reading at the next clock cycle’s raising)
(2) Write timing:

tlnﬂf. :

ADDRESS ><
= : : : N Vi ; ; ; /
o - - oy
aEsE N\ N\ |

=+ tAR—=

-~ tas
sz)
- tCl'.“."l "’ ‘
N

|< DATAVALID

3624 arw [

DATAouT PREVIOUS DATA VALID ™

- tD'i'\' —_— 'l—tD—_I—-'
DATAN (DATAIN VALID /

42

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

WRITE CYCLE

wic Write Cycle Time 10 12 15 ns
taw Address Valid to End of Wrte 8 8 10 - ns
W Chip Select Lowto End of Wiite 8 8 10 — ns
Bw Byte Enable Low to End of Write 8 8 10 - ns
s Address Setup Time 0 0 0 - ns
R Address Hold from End of Write 0 0 0 ns
WP Write Puse Width 8 8 10 - ns
ow Data Valid to End of Wiite 5 6 1 - ns
DH Data Hold Time 0 0 0 — ns
towd" Write Enable High to Output in Low-Z 3 3 3 - ns
{0y Write Enable Low to Output in High-Z - & o 7 — 7 ns

e During writing, signal #0OE can be high or low which will not effect on the

operation.

e Writing operation has to give the data and address to be wrote at the signal
#WE ‘s rising. Write into SRAM in next clock circle.

e In the written status BLE | at least one BHE is generated at low level.

3.1.3 Experiment content

This Experiment is to control the SRAM on the development board to read
the data from specified address and write the data to the specified address.
And compare whether the read data is the same as the write one. If they are
the same, means SRAM read/write successfully.

3.1.4 Experiment steps

Setup project.

Add source file.

Integrate, layout, and route;
Download and debug.

A WODN -

3.1.5 Experiment result

Read data and write data are the same. The error indicator light on the
development board is off.

43

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Experimentl4 SDRAM read/write

control experiment

3.2.1 Experiment purpose

1. Know the internal structure of SDRAM.
2. Handle SDRAM working principle and reading and writing timing
3. Program SDRAM controller.

3.2.2 Experiment theory

In the high speed real time or none real time signal processing system, using
large storage to achieve data cache is a necessary part which is also the
importance and difficulty in the whole system achieving. SDRAM has
advantages such as low price, high precision and high speed of reading and
writing. It is the first choice for the data cache. However, the structure of
SDRAM is quite different from SRAM'’s. Its timing controlling is more complex
which limit the using range of it.

Following is the internal structure of SDRAM:

44

Eleckits Studio

http://www.eleckits.com

Self refresh logls

Internal Row

Skype: eleckits2011

& timer counter
CLK — ¥ 1816 Bank 3 |
- . >
Aow active Fow 1Mx18 Bank 2 |
CKE —™ Pre =
—w DEcoders = 1Me16 Bank 1 |
cs # 1Mx16 Bank 0 — 1
@ :
- [s i
RAS —» T 3 M . [€M [DOO
= 2 | g :
i U.. a Memary 4 - (M — W DO
i T oo i &+ [i
CAS —™ 2 |refresn — R cel N .:: |
o ArTa f Il 5 : E
e —™ L] w i I] & :
WE Salumn Column 2l |t I
Actlve _ 1] I3 |
Pre e L = o i
UDGM—- Decoders N LS e Dot4
M T |4M M pois
L DGR & decoders g
* Column Add
Eank SelEct » counter
AD —» » AOIrEES
I 2
Aq ™ Reglsters
I & Burst
11 #* Counter
I I
I I |E
[
Al —m
BAD — L4

SDRAM devices’ pins are separated into three parts: controlling signal, address

and data. Following are the detailed definitions:
SDRAM(x16) Pin Assignment

Signal Name Type Description
CS Input Chip Enable
CLK Input Clock
CKE Input Clock Enable
RAS Input Row Address Strobe
CAS Input Column Address Strobe
WE Input Write Enable
DamML, DQMH Input Data Mask for Lower, Upper Bytes
BA Input Bank Address
AJ0:10] Input Address
DQI[0:15] o] Data

Usually one SDRAM includes several BANK, Each BANK's storage unit is
addressing by line and row. Because of this special storage structure, SDRAM
has following working features:

e SDRAM's initialization---after SDRAM is powered by 100~200us, there

45

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

must be one initialization process to configure SDRAM ‘s mode register. Mode
register’s value decides the working mode of SDRAM.

e visit storage unit --- To minus 1/O pins, SDRAM reuses address line.
Therefore, when read/write SDRAM, use ACTIVE to active BANK to be read/wrote
firstly and latch line address. Second, when the read/write command is valid, latch
row address. Once BANK is active, only after finish the pre-charge command, you
can reactive the same BANK.

e refresh and pre-charge--- To improve the storage density, SDRAM uses
silicon capacitor to store data. Capacitor always tends to discharge. Therefore,
there must be regular refresh cycle to avoid data missing. Refresh cycle can be
got by Min refresh cycle / clock cycle. Pre-charge the BANK or close the active
BANK can pre-charge the special BANK and also can effect on all BANK, A10,
BAO and BA1 which used to choose BANK.

e Operation control --- SDRAM’s detailed controlling commands finishing are
assisted by some specified controlling pins and address lines. CS. RAS. CAS
and WR in the clock rising statues decide the detailed operation action. In some
operation actions, address line and BANK choosing control line are input as
assistant specifications. Because of the special storage structure, SDRAM has
more operation commands which are different from SRAM that has simple
read/write. Detailed operation commands are as following:

SDRAM Command Truth Table

Function Symbol CS | RAS | CAS | WE | BA | A10 [A[0:9]
Device Deselect DSEL H X X X X X X
No Operation NOP L H H H X X X
Read READ L H L H Y L W
Read w/ Auto READAP L H L H W H W
Precharge
Write WRITE L L W L W
Write w/ Auto WRITEAP L H L L W H W
Precharge
Bank Activate ACT L L H H A A W
Precharge PRE L L H L Y L X
Selected Bank
Precharge All Banks PALL L L H L X H X
Auto Refresh CBR L L L H X X
Load Mode MRS L L L L W W W
Reqister

In storage family, SDRAM is a special one. It has large storage, high speed,
however, at the same time it has difficulty in storage operation. There are two
solutions. One is to control SDRAM'’s read/ write timing directly to achieve the
data’s storage and read. One is to program a SDRAM controller. Simplify the

46

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

SDRAM'’s read/write to SRAM form. Finish the SDRAM read/write by some
commands. This experiment is to finish the SDRAM read/write on the
Modelsim development board by both of two ways.

No matter which way to be used, you have to know the read/write timing of
SDRAM:
A. Initialize and write register.

™ m . T4+ . To+1 To+! Tp+2 Tp+3
wly PS8 B 4 B Ly L LS L

S/ %“%J /4
e U e YA IO O
TN
e O T

T
oo s

L]

] W 5
i ! e | TREC I REC J tMED I
L gowrae Lo & L L
Voo and Pratharge AUTO REFRESH AUTO REFRESH Program Mode Register * 4
CLK stabla all banks

7] poNT CarE

INITIALIZE AND LOAD MODE REGISTER
B. Refresh automatically

o Fot—f | A-—-i g ‘H L& L5 L
| |
o mww—wm

Ioas | oMM

- i
] I 1
COMMAND FHMEW MgP Wﬂﬂéle NOP ,éfﬁfsﬂ Mrl WaP @ ACTVE
T

= W/W/WWM

AD-AB, AT1 /) -

'AS (F1T)
-
o tmmfmmw
o _Heed (0
13 17
i tirc! 'Rrc!
Pracharge al /| DONT CARE
active banks /A

AUTO REFRESH MODE

47

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

C. Burst mode read.

[y Dloiw
RCD CAS Latency z
r
RS tapr
TRe

7] DON T CARE
SINGLE READ — WITH AUTO PRECHARGE

B unperNED
D. Burst mode write.
fkc_mnl-—“-‘—i——-}-‘—‘—-i-t—-[s I s I s Y e A s A e A e B
<P W W W W W W W W | W~
coms K YA NI I NN NN L
Do Sent s

A-n9, AT

SINGLE WRITE — WITH AUTO PRECHARGE DON'T CARE

E. Whole page read

48

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

'] ™ ir]] T4 15 ® Tt Tn+2

= e s e I S D LI L 1

Soxs | ke

P | W | W || ||| | | W

o | o N
] T3/ T/ ST G/ G/, T G G i/

s | o

o B T | 2000 | A0 | £ | A0 | A | 47 | £

s tas

o W Y= O

¥
1

Y &) T
e Sl e e i, 7 IR

512 (16} lncations within same row
1,024 (xB) locations within same row
e LAY Latency 2,048 (x4} locations within sarne fow

Full page compileted —J
Full-page burst does not self-terminate,
Cant use BURST TERMINATE command,

READ — FULL-PAGE BURST
F. Whole page write

OO W = I e T s T s B s N e M
M@'TWWWWW@WW W|
Y €T) T/ I) S 7 ST 7 ST G))
oS, T, T | 0 | s | s\ . |
K401 fm%WwwW/W/MWMQMW/MM
w Ko T
s Ko NI W T T
wlwi % o

H Bs| s s | 'on, DS
- our Ko me WKomn= YKo Ko XN
tRed [I [I
| | I Full-page burst does not
512 (216} loca tions within same row saff torminate, Can use

1024 (x8) locations within same row BURST TERMINATE
2048 (x4} locations within same row command 1o stop.>1

Full page completed > DON'T CARE
WRITE - FULL-PAGE BURST

Upper is the timing pictures of SDRAM achieving each operation. Connect
them and you can achieve the SDRAM'’s initialization and read/write.
Detailed SDRAM controlling order can be described by following picture: I

49

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

B3 SDRAM =M REHBHE
Here, recommends one SDRAM controller overall design diagram and

outside interface signals:

CLK — | Bk

CMO(10] ———
CMDACK wtfp——] EE—

ADDR — p»(sSDASDRAM ——P
':F'-;’I'ﬂrl:*"ﬁl H‘.EJ\I SDR SDRAM

&
DATAIN —————p= -ﬁiﬁf:ﬂ—-p

oM ————P >
DATAOUT of——— | B S

SDRAM controller and external interface schematic diagram is as upper.
Signals of the controller’s right port are all connected to SDRAM corresponding
pins. Do not introduce here. Signals of controller’s left port are system
controlling port signals connected to FPGA. Among them, CLK is system clock
signal, ADDR is the SDRAM address signal gave by system, DATAIN is the
data signal used by the system to write into SDRAM, DATAOQUT the data
signal used by the system to read from SDRAM, CMD [1:0] and CMDACK are
system and controller commands interactive signal, and M is data Mask signal.

50

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Central Intzrface Gommand Moduls
Madule
CMD[1:0] = > .
CMDACK - Cammand Request s
i Intarface __ Ack - BA[1:0]
ADDR[ASIZE-1:0] - .- .
ADDR - . Gommand -GS _N[1:0]
e Genarator - CKE
Flaquast . - FaS_N
-
Refrazh < Ack - CAS_N
Control - WE N
Diata Path
Mesduls
. OE
-
DATAIN[DSIZE-1:0] =
DMIDSIZE/S)-1:0] B Path -+ - DO[DSIZE1:0)
DATACUT[DSIZE-1:0] g - DOM[(DSIZEB)-1:0]

SDRAM Controller Block Diagram

As upper diagram shows, SDRAM controller includes system controlling
interface module, CMD command resolve and responds module and data
access module. System controlling interface module is used to receive system
controlling signals and generates different CMD command combination. CMD
command resolve module is used to receive CMD commands and resolve
codes to operation commands, and generate SDRAM operation. Data access
module is used to control data’s valid input/output. Following are feature
details of each module:
(1) System control interface module:

51

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

T e p— @ CM_ACK
LS
1 o oa & HOP
READA
= WRITEA
REFRESH
CMD[2:0] i PRECHARGE
comemand LOAD_MODE
D LOAD_REG
oD a
>
LOAD_REGS
o
=
ADDRIASIZE-1:0] =0 o feE SADDR
— SC_GL
. SC_RG
D @ = B SC_RAD
|| SC_PM
>en SC_BL
Riafrash
Count Zaro
D a | Desode o REF REQ
e >
| Load
A
Riafrash
Control
. e A—
oLk - REF_ACK

Control Interface Module Block Diagram

This module includes initialization mechanism and system commands
analysis mechanism. Initialization mechanism not only has to finish SDRAM'’s
initial configuration, but also do the initial configuration of the controller which
keeps the control and the external SDRAM in the same working mode. Here
are the processes. The system controlled by the counter is powered to around
200ps. Do SDRAM’s initial configuration firstly. One Precharge all bank
command finishes all BANK's pre-charge. Then, follow several Refresh
commands. Then is mode configuration command LOAD_MODE. Finish the
SDRAM woke mode setting. After that, do the controller’s initial configuration
job. Firstly, send out command LOAD_REG1 to controller loading mode. Then,
send out LOAD REG2 command to load controller’s refresh counter value.
Complete the controller’s initial configuration.

After upper processes, system command analysis mechanism can
receiveand analysis system’s read/write signal, address and CMDACK signal
feedback from the next module. It also generates corresponding CMD
command and SADDR address information to CMD command analysis
module. Through program setting, achieves determining when read/write
Precharge or Refresh CMD command sent out at the certain moment
according to the specifications of initial configuration which simplify the
system’s controlling. Each time when receive CMDACK is 1, means CMD
command has been sent and be valid. And have to send out NOP command

52

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

(CMD=000). Attention that, SADDR is time-sharing reused. When initialize
load mode, SADDR is used to transform the mode character content defined
by user. However, in normal read/write period, SADDR is used as address
transform to transit line, row and block address asked by SDRAM. More,
system analysis mechanism will feedback SDRAM_FREE and
FDATA_ENABLE to system user according to the status of the controller's
operation of SDRAM.

Detailed CMD commands descriptions are as following:

Command Abbreviation RASHN CASN WEN
Mo oparaton HOP H H H
Aothve ACT L H H
Fead (2l H L H
Wne WWH H L L
Burst terminate BT H H L
Frecharge PCH L H L
Autorairesh ARF L L H
Load mode register LMA L L L

(2) CMD command resolve responds module:

do_nop
do_reada

NOP do_writes
\ISFHEI#EE)J: do_refrash
do_prechargs RAS_M
REFAESH » do_load_mods 4, 4, . CAS_N
PRECHARGE L 7 D Qe WE_M
LOAD_MODE — CKE
REF_REQ
Arbitar Command
CH_ACK --tf——— Ganserator
16 16 SA[11:00
REF_ACK -f— o et [| (7] e BA[1:01]
» I e CE_M[1:0]
ADDR[ASIZE-1:0] A
SCCL
EECEES o | Command
= ™ Timing
SC_PM

SC_BL [—‘
OE

Command Module Block Diagram

A

This module judges the CMD command and the result is outputting
corresponding operation command signal to command response module. For
example, when CMD is 001, it will output do_read signal be 1; and when CMD
is 010, it will output do_write signal be 1. At the same moment, only one valid
operation command can be output.

Besides, this module includes the mode register which can be used to
precharge some certain mode specifications. Mainly, there are three types:
First is the SDRAM mode controlling register. In the command LOAD_MODE ,
send this register into SDRAM mode register to control SDRAM’s working
mode. The second is SDRAM controller’s specification register (LOAD_REG1)
which makes the SDRAM controller’'s working mode match the external

53

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

SDRAM devices’ working mode. The third is SDRAM refresh cycle controller
register. This register precharge the auto-refresh counter value defined by
user which is used for the precharge of SDRAM's refresh cycle. The precharge
value of three types register above is sent by SADDR when the system
controlling interface module is initializing. According to the operation command
from CMD command analysis module, this module make the action which
meets SDRAM read/write specifications to achieve user’s expectations. It
gives data choosing signal OE to control data path module (in writing, OE is 1,
while in reading OE is 0). Besides, this module processes system non-reuse
address ADDR to reuse address SDRAM and sends to SA, BA time-sharingly.
In the program, actually, CMD commands of WRITEA and READA imply
command ACTIVE. Therefore, when the module receives command do_write
or do_read, it will do activation firstly. And then does read or write after CAS
delay required by initial configuration. For example, during the initialization,
mode requires CAS=2, BURST LENGTH=PAGE, and after receives
do_write=1 from command interface module, it will do activation and gives line
address (sends RAS_N=0, CAS_N=1, WE_N=1, SA=raddr). After 2 clock
delay, it does write and gives row address (sends RAS_N=1, CAS_N=0,
WE_N=0, SA=caddr).

Besides, after receives each kind of operation commands, this module will
responds to CMD command analysis module and cmdack signal is 1. Finally,
the responds will be sent to system controlling interface module’s CMDACK
and signal is 1. If there is no operation command, cmdack=0, CMDACK
signal is 0.

(3) Data path module

OE

N

CATAINDSIZE-1:0] e— 0 0
CLK

DATACUT[DEIZE-1:0] - o D a D
- <4

Do{DSIZE-1:0]

Data Path Module Block Diagram

This module accepts OE signal’s controlling and makes synchronization of
data in/out and corresponding operation command. When OE is 1, data can
be written to SDRAM by DQ pin. When OE is 0, data can be read from DQ
pin of SDRAM.

3.2.3 Experiment content

1. Design to program a SDRAM controller and check it’s availability on the

54

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

simulation platform ModelSim
2. Write programs to control SDRAM read/write on development board.

3.3.4 Experiment steps

1. ModelSim simulation part
(1) open ModelSim

ﬁlndelﬂin SE FLUS 6.0

File Edit VYiew Format Compile Simulate Add Tools YWindow Help
i A w
Cantaing: i ‘

Ywhorkspace L H A X

|"|Name |T_I,I|:|e ¥z

B | ok Library

wital2000 Library

ieee Library

Wl rnodetsim_lib Library

std Library

std_developerskit Library

[l svropses Library i

_ din . i -

] I—]

MLibrar_l,l 43

MadelSim: |

|<ND Dezign Loaded> | 4

(2) setup anew project and add source file or file wrote by user.
choose “File —» New — Project...”

ﬁ Create Project

— Project Mame

| edrarm_control

— Praoject Location
Yiew Format Compile Sim| ||mples/sdram/sdram_control/sim Bru:uwse...l

Edit

Folder j |
Open... Source * ——Diefault Library Mame
Lloze Froject... H IW':'fk
Imnport r Librany... |
Export * Window ¥ v | Ok I Cancel

Fill project’'s name and address in upper dialog. OK.

55

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

ﬁhdd itemsz to the Project &|

Click on the icon to add ikems of that type:

1]]

Create Mew File Add Exizting File
Create Simulation Create Mew Folder

Cloze J

If you want to set up new file, choose Create New File. If you want to add
the exits file, choose Add Existing File. Add or write source file, and you can
see they are displayed in Workspace:

."."'."II:Ifl‘i.E:FIEIE:EE _— P E

1'1Name |5tatulT}Ipe |Drn
;_,'j sdrarm_test_th.v % Veiilog O
?_,'j contral_interface.w '?' Yerlog &
[u1] Paramz.v P Weilog 2
;_,'j rntdSle2mash? v % Veiilog 1
[u] =dr_data_path.v P Weilog B
[uL] Command.v P Weilog 4
;_,'j sdi_sdram.v % Veiilog 3

(3) Compile
Right click on any source file, choose “Compile”

Workspage —————————

‘l"IName |StatulT_l,l|:|e |Eln

sdram_test_th.v P Wedog 0

§ control_interfa S
Paramz.v

mtd3lcZm32hE

sdr_data_path Larnpie

Edit

Compile Selected

Cammand.y Add to Project » Compile Al
sdr sdham.y Femove from Project Compile Qut-of-D ate
wiL| =d :

Claze Project Compile Order...
Compile Report...
Compile Surmary...

Properties. .
Project Settings. ..

Compile Properties. .

ModelSim will program all files automatically. All mistakes found by it will
be list in following dialogue. Here, double click mistake, and ModelSim will
open the file which includes it automatically and finds the location of the
mistake. If the programming passes, the blue question mark near source file
will change to green checkmark.

56

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

ﬂName |5tatul Type |Elr|

sdram_test_th.y Werlog O

§ control_interface. v Yerlog
Paramsz.v o Werlog 2
ur| mtd8leZmaz2b2 v o erlog 1
sdr_data_path.y erlog B
Command. v + Werlog 4
sdr_zdram.v W Werlog 3

(4) Simulate

Choose check page Library in Workspace. Click the plus mark on the left
of Work. In the pop-up submenu, find simulation module. Double click or right
click to choose Simulate and ModelSim will run simulation automatically.

ghratisii_ks_outclk

L] mtdBlc2m3zh2 Module
1] parallel_add Module
—j zcfifo Module
1] sdr_data_path odule
1] sdi_sdram Module
-—:] stratin_ledz !:"r”ul'f'te
1] stratings_dpa_lve E it
—:] shratisi_keds_rs]
:] Fecompile

Mrkmina

(5) watch waveform
Choose Sims check page in Workspace:

Ohjects HA M
g =dr_sdrami edr_sdrarmr 4
G-z sdrami mtdBlc2m: 4
L@ HIMPLICIT WIRED. . sdram_tes 4
L@ HIMPLICITWIRE(ch).. sdram_tes 4
- HIMPLICIT-%IRE(cmd]... sdram_tes 4
- HIMPLICITIRE(addr... sdram_tes 4
- HIMPLICITIRE(rst)f... sdram_tes 4
L@ HIMPLICITWIRE(ch).. sdram_tes 4
LB HINITIALHE sdram_tes 4
L HALWAYSHIS sdram_tes 4
LB HALWAYSHIE sdram_tes 4
L HASSIGNH24 sdram_tes 4
L HASSIGNHS sdram_tes 4
L HASSIGNHES sdram_tes 4
LB HASSIGNHED sdrarm_tes 4
LB HALWAYSHTS sdram_tes 4
L HALWAYSHII sdram_tes 4
- HALWAYSHI11.120,1... sdram_tes 4
LB HASSIGNHIZE sdram_tes 4
LB HA5SIGNHT5T sdram_tes | 4
L@ #ALwWarSHIIE sdram_tes . | :
J I |)

llﬁlPTDiECl JMLibrary l @siml £ Filesl LE

Right click top testing module and choose “Add Add to Wave”.

57

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

."."'."II:I”=:.151|:IEII::EE _— P E DbiECtS

(¥ Instance | Design ur;‘ Mame
BT sdram_test_th I
Bl sdr_sdraml Wiew Declaration |
Bgl sdrami :
— ﬂIMF'LIEIT-WI
o HIMPLICIT Create Wave ijg to Eataflﬂw
— o HIMPLICIT - ko List
@ HIMPLIOITw Comy Log
| #IMPLICITw Find..
P s Expand Selected
—a HINITIALHE Collapse Selected

—o HALWATYSHIS Ewpand 4

b HALWAYSHIE e Al
A HACCISRIH2A

ModelSim will open a waveform simulation interface automatically and
add all registers and interfaces of top testing module:

=t wage — default

File Edit V¥iew Insert Format Tools Window

@Eé%HQ%EﬂF
LR

o

?

AN NN

~

LY

‘.

T

[0 ps to 13544700 ps [How: 0 ps Delta: 0

Back to ModelSim[t) interface, and type “run 20us”in command input
window.

58

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

il Tranzcnpt

118 Compile of Params. v waz successiul,

1|1# Compile of zdr_sdram.v was successful.

[1# Compile of Command.y was successful,

11 Cornpile of contral_interface. v was successhul,
114 Cornpile of sdi_data_path.v was successhl,
1# 7 compiles, O Failed with no erars.
{|ModelSim: weim wark, sdranm_test_th

|1# w=im work sdrann_test_th

WSIM B run 200

.|Pr|:|jec1: : zgdram_control |I'I|:n.l.r: 0 pz I
Few seconds after “Enter”, you can see the simulation result as following:

= pawy — defasli

Bile Edit Fism lossct Fgrest Teda Lisdes
= e it

Fodhsm ool il

= Fullam fedl il
.'d_.n_l.-i_hkhr.
Lt e i
o lesl @At [5H]
T
el fuel e
rda
St B
ol fegl BT
o T

L Yo teat st
Falbam_feat BUFRTH
Fedim el A e |
[TRTTT T DT PR
= N TR P
e s M (00

£ Fulbary lesl Butackh
Pl e B TA
el fuel BSTA
Vel RS TA,,
Fodkam el RS

P19 | e) L e | e || AR L || e omlm

o e R

¢ fadr (sl kg
el e B
Fein I0E]_Buishi
lhn_'ni Ergr n |5

p|-| i~

'ilpr ta 2l us Hu- 2lilu: Palta: 2

2. Development board testing part
(1) set up a new project.
(2) add source files
(3) integrated, pin defined, and route
(4) download and debugging

3.2.5 Experiment result

LED shinning on the development board means SDRAM'’s read dates and
writing dates are the same. Working properly.

59

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Experimentl5 FLASH read/write control

experiment

3.3.1 Experiment purpose

1. Learn the structure and working principle of Flash memory.

Master NOR Flash’s sequence of reading and writing.

3. Program to control the Flash’s reading and writing on development
board.

N

3.3.2 Experiment theory

1. Brief introduction of FLSH

In 1988, Intel first developed the NOR Flash technology, which broke the
monopoly of EPROM and EEPROM. And during the next year 1989, Toshiba
published the structure of NAND Flash, highlighting lower cost per bit and
higher performance, and it can upgrade easily through interface as a disc.

NOR is characterized by its (XIP eXecute In Place), with which the
application program can operate in Flash memory directly, rather than read the
code into system RAM. With high transmission efficiency, NOR brings high
cost benefit in small capacity of 1-4MB. But the low writing and erasing speed
greatly affects its performance. NAND structure can provide ultra high cell
density; achieve high storage density, and high writing and erasing speed. The
difficulty of applying NAND lies in the flash management, and the need of
special system interface.

The Am29Iv320DB on development board is a NOR Flash memory; it has
the following features:

1. Small size, great capacity; can reach more than 10MB now.

2. Save the data when power off; the data can be kept for 10-100
years.

3. With separate address and data bus, it can read the data quickly

through bus, so it has the same reading speed as static RAM, and can
be used not only as data storage, but also program storage.

4. Write operation has to be completed in Bytes or words through
instruction sequence, each Byte or word needs more than 10us.
5. Erasure also has to be operated in blocks through instruction

sequence; the usual weight of one block is 64K; the erasure of each
block needs more than 10ms.

60

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Internal structure of Flash:

RY/BY# DQO-DA15 (A-1)
Ver
LY —_—
V33
_ Erase Voltage INnputfOutpLt
RESET# Generator o IjEul"ﬁe:rsp
1 ¥ PN
WER —— S::attel
Contral
BYTE# — w|
Command ¥ ‘
g
Register [PGM Voltage 4
Generator
[Chip Enable Data
CE# r | Oulput Enable STB Latch
OE# ol Logic ’_'
l STE- Y¥-Decoder = Y-Gating
Vee Detector Timer 2
;E ¥-Decodar = Cell Matrix
=
=]
AD-A19 =
I
Pin functions table:
DQ&-DQ15
Addresses DQo- | BYTE# BYTE#
Operation CE# | OB# |WE#| RESET# (Note 1) Dar =V =V
Read L L H H Ay Dout Doyt | DQB-DQ14 = High-Z,
\Write L H L H -‘f'\"\ D"L\]"\ Da5 = A1
WVen+ Ve +
N i Ve 2 Vo = .y T .
Standby L X X 03y X High-Z | High-Z High-Z
Cwtput Disable L H H H X High-Z | High-Z High-Z£
Reset X x X L X High-Z | High-Z High-Z
Sector Address,
Sector Protect (Note 2) L H L Vip AB=L Al=H Dy X X
AD=L
Sector Address,
Sector Unprotect (Note 2) L H L Vio AS=H Al=H Dy X X
AD=L
Temporary Sector vy .
u nprg-_ec*t’l X X X YID ':"Ih Dlh D 1IN H Igh'z

The read operation of Flash doesn’t need to write control word; with only
address can it output the data. While the write operation is relatively
complicated; you have to write control word first, and the details are as follows:

61

Eleckits Studio

http://www.eleckits.com

Skype: eleckits2011

command . Bus Cycles (Notes 2-5)
Sequence S| First Second Third Fourth Fifth Sixth
(Note 1) O [Addr [Data| Addr |Data| Addr |Data| Addr | Data | Addr | Data| Addr |Data
Read (Note 5) 7| RA | RD
Reset (Note 7) 1] xxx | FO
Word 555 ZAA | | 555
a Manufacturer ID Byte 4 AA 555 55 AR 90 | X00 01
@ - N 555 55 7
% |Device D, Word | [7885 | T2aA [| &ss | ['x01 | 2204
S |Top Boot Block Byle ARA 555 AAA X0z | Cca
= : A, 555 55
< |pevice o, Word | [7885 | T 2AA || mes | T[won | 22d
© |Botiom BootBlock [Byte ARA 555 AAA X0z | 49
[14]
? . . ,_ (SA) | Xx00
o Word 55 2AA 55 -
S | sector Protect Verify i N X02 | Xx01
2 4 AA 55 90 |-
(Note 9) Byte AAA 555 AAA (sa) | 00
Y 7 x04 | 01
Word 55
CFI Query (Note 10 1 98
AL) Byte AA
Word 555 ZAA | | 555
Program By | 4 AA o= 55 | —f A0 | PA | PD
Word 555 A | | 555
Unlock Bypass By | 3 AA ot 55 | 20
Unlock Bypass Program (Note 11) | 2 | XXX | AD | FA | PD
Unlock Bypass Reset (Note 12) 2] 00| 90 | X | 00
Word 555 AR, 555 555 2AA 555
Chip Erase 6 AA 55 80 AA 55 10
P Byte AAA 555 | 0 | AAA AAA 555 | °° [AaA
Word 555 AR, 555 555 2AA
Sector Erase 6 AA 55 80 AA 55 | sa | 30
Byte AAA 555 | 0 | AAA AAA 555 | °
Erase Suspend (Note 13) 11 XXX | BO
Erase Resume (Note 14) 1] X | 30

Detailed time specifications see chip manual.

2. Specific examples:

Here we will verify FPGA's controlling of Flash reading and writing through
achieving a simple function. The detailed process is as following: after system
is powered and reset, through commands, do erase operation to the whole
FLASH. Then, write data into FLASH by writing commands. And read the
data wrote into the FALSH by reading commands. If the data written in keeps
the same as read out one, the light on the development board will be on.

Simulation result:
1) . Erase operation corresponds to the Chip Erase order in the chart. Timing

requirements:

62

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

AC CHARACTERISTICS

Erase Command Seguence (last two cycles)

twe t»'\D [
Addresses :>§r 2450 K S){{}\){‘}(A\{;ﬁ‘éx VA X VA X:

£55h for chip erase

—\ A s

Ciata

1 30h

10 %r Chlp Erass

— tE.L.S"'l-'I— = {55 —==|
RY/BY# 1\
—| by |=— I-.
Vee 1!
I

There are two kinds of erase operations: Sector erase and Chip erase; we
adopt chip erase here. It should be noticed that data is latched to the
corresponding address during the rising edge of WE.

Simulation result:

As is shown in the table, address corresponds to Addr in the chart, and
data refers to DATA. According to the table, put the data into the
corresponding place. Pay attention to that the data must be stable when the
rising edge comes on WE.

2) . Write operation. Corresponding to the Programmed operation in the upper
table, FLASH itself has status machine to the FLASH controlling. It will confirm
the change of status machine according to the operation code given by user
and achieve related operation. In default situation, after system is powered and
reset, FLASH is in the status that can read data. Therefore, without any
command, you still can read data from FLASH. Only give the FLASH address
will be ok. To other operations, you have to give the related operation code.
Following is the write operation (Program) simulation result:

As is shown in the figure, the first three addresses and data is the
operation code; the last one is data to write and the corresponding address.
Every time the data is written, the state machine of Flash will skip to the state
of data access, and we can read the data directly at this time. If there is other

63

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

data to write, we have to resend the operation code.
3) . Read operation corresponds to READ in the above figure.

Read operation on Flash is very convenient; the address of data to read is
the only thing needed. Timing requirements are as follows:

tag
Addresses Xr Addresses Stable 3}<

tacc -

CE# N i

. - pF -

OE# OE=

-~ oz - i
WE= l—— o ———

— | Ty [—
HIGH Z =" e HIGH Z
Outputs /<‘<“:T Cutput Valid }}}}7

RESET# j_

RYIBY#

The figure shows address is the address of read the S|mulat|on |m|tates
that after sending OE signal, there will be a period of time before the output
comes out, and the next data will be written in after the previous one is read
out.

3.3.3 Experiment content

This experiment is to control the reading and writing of Flash through
Verilog, and verify if the read data is the same as write data on development
board.

3.3.4 Experiment result

On the development board, the corresponding LED turns on means
FLASH works normally.

64

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Experimentl6 Data flow control

experiment

4.1.1 Experiment purpose

1. Know basic idea of data flow.

2. Know the basic theory of data flow controlling which includes popline,
serial/parallel, FIFO, Ping-Pong read/write.

3. Handel the achieving way of each data flow processing way.

4.1.2 Experiment theory

Data flow controlling is the difficult often met in data signal processing. In
designing, designed speed is not enough or the resources used in designing
is over the maximum content of FPGA will effect on the designed cycle. This
is the problem in the relation of speed and area we often mentioned. To solve
it, we need useful way to control the data flow. Here we introduce four ways:
popline, serial/parallel, FIFO and Ping-Pong read/write. Their features and
using ways are as following:

(1) popline

Popline processing is a useful way in high speed designing. If the designed
processer flow is separated to some steps and the whole data processing is
“single flow” which means no feedback or interaction and the output of
previous is the input of the next, we can consider using popline designing way
to improve the system working frequency.

The popline design structure diagram is in diagram 3. The basic structure is:
connect n operation steps which are suitable separated in series. The most
important feature and request of popline operation is that each step of data
flow is continuous from time. Suppose each step is passing a D trigger (means
use register to hit a beat), the popline operation is similar to a shift register.
Data get through the D register in turn and finish each step’s operation.

The key of popline design is the reasonable arrangement of the whole
design timing. It asks the reasonable separation of each operation step. If the
previous operation time equals to the next one, the design will be the simplest.
The previous output directly imports to ten next inputs. If the previous
operation time is longer than the next one’s, you need to do the certain buffer
of the previous output data and then import to the next inputs. If the previous
output time is shorter than the next step’s operation time, you have to copy
the logic to divide the flow, or in the previous step use store, after-treaterment.

65

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Or the next step data will be overflow.

The popline processing way is often used in WCDMA designing like RAKE,
receiver, searcher, leading to capture and etc. The reason why popline
processing has high frequency, is that it copies processing module. It is a
concrete embodiment of the thought area for speed.

There are many ways of popline achieving. The most direct way is to use
many always blocks in one module. Each always stands for one step of the
whole program. In this way, when the trigger edge comes, each always blocks
do one operation. And these steps compose a simple popline. Details see the
following program:
module pipeline(cout,sum,ina,inb,cin,clk);
output[7:0] sum;
output cout;
input[7:0] ina,inb;
input cin,clk;
reg[7:0] tempa,tempb,sum;
reg tempci,firstco,secondco,thirdco,cout;
reg[1:0] firsts,thirda,thirdb;
reg[3:0] seconda,secondb,seconds;
reg[5:0] firsta,firstb,thirds;
always @(posedge clk)
begin
tempa=ina; tempb=inb; tempci=cin; //input data buffer
end
always @(posedge clk)
begin
{firstco,firsts}=tempa[1:0]+tempb[1:0]+tempci;

/ffirst level add (low 2 bytes)

firsta=tempa[7:2]; //data buffer which have participated in caculate
firstbo=tempb[7:2];

end

always @(posedge clk)

begin

{secondco,seconds}={firsta[1:0]+firstb[1:0]+firstco,firsts};
//[second level add (add 2 to 3 bit)

seconda=firsta[5:2]; //data buffer

secondb=firstb[5:2];

end

always @(posedge clk)

begin
{thirdco,thirds}={seconda[1:0]+secondb[1:0]+secondco,seconds};
/lthird level add(add 4 to 5 bit)

thirda=seconda[3:2]; //data buffer

thirdb=secondbl[3:2];

66

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

end

always @(posedge clk)

begin
{cout,sum}={thirda[1:0]+thirdb[1:0]+thirdco,thirds};
/[forth level add(two higher bits add)

end

endmodule

Example:

Here we give an example that use detailed application popline to design the
adder. It is to achieve the additon of 8 symbol numbers. It uses three-level
popline to calculate the addition of 8 9-bit numbers with symbols. The input of
each level needs to be expanded first. For example, to the first level popline,
data_reg1[0] is the result of data_inO after is bit expanded:. data_reg1[0] =
{data_inQ[8],data_in0}. After three-level popline, you can get the final result

(2) serial/parallel, parallel/serial exchange.

Parallel communication: data are transferred in several parallel channels
in groups at the same time. For example, several binary bits which compose 1
character codes are transferred in several parallel lines separately. Each bit
uses separate line. Parallel communication is very normal especial in two
devices which are close to each other. The most common example is the
communication between PC and external device, like print cable. Other
examples include the communication between CPU, memory and device
controller. There is no advantage when the parallel communication is used in
long distance connection. First, using several lines in long distance is more
expansive than using one. Another problem is about the demand time of bit
transform. When the distance is short, bits sent in multi-channel can be
received almost in the same time. However, in the long distance, resistances
in wire obstruct the transform more or less. Therefore, the bits cannot reach in
the same time which brings troubles to the receiving port.

Serial communication: data flow is transferred in one channel by the serial
way which means transfer all bits one by one in one line. This way brings
additional complexity to sending device and receiving device. The sending way
must clear the sending order. For example, when send 8 bits of one character,
sending part has to decide which one to be sent first, the high bit or the low one.
In the same way, the receiver has to know where to put the first bit in the
received purpose byte. If two parties of serial communication can no keep the
same in bits order; there will be error in data transmission. .

As the sending and receiving part only need one transfer channel in serial
communication, it is cheaper and easier to achieve, and in long distance
connection, it is more realizable, it is the widely using way now a days.
However, it sends one bit each time, so the speed is slower.

Serial/parallel exchange is an important skill in FPGA design. It is the often
used way in data flow processing. It also reflects the idea of the exchange

67

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

between area and speed directly. There are many ways of achieve the
serial/parallel exchange. According to the data order and quantity, you can use
register, RAM and ect. to achieve. In the Ping-Pong operation diagram before,
it used DPRAM to achieve the serial/parallel exchange of data flow. And as
used DPRAM, the data buffer can be opened larger. To the lower quantity
design, you can use the register. If there are no special requirements, you
need to use synchronization timing design to achieve the serial/parallel
exchange. For example, in the exchange Serial to Parallel, the high bit is in the
front and can be achieved by the following program:
prl_temp<={prl_temp,srl_in};

Here, prl_temp is the parallel output buffer register, and srl_in is serial data
input.

To the serial/parallel exchange has the special order; you can use case
statement judgments to achieve. Status device is used for the complex ones.
As the serial/parallel change is simple, we do not explain it here.

Parallel/serial exchange is also an important skill of FPGA design. It uses
the expense of step to get the advantage in area. It is often used in the FPGA
and other devices’ interfaces. You can save the resource of FPGA pin that
occupied by data transmission. Example, the 12C controller uses parallel/serial
exchange. It sends one 8bit data in 8 cycles. Each single cycle (SCL) sends
one bit (SDA) only. Detailed achievement can follow the program:

if(3'b000 !'=n) n <=n-3b001 ;
else n <=3b111 ;
assign dout = din[n] ;

As mentioned before, the introduction of parallel/serial and serial/parallel
exchange can be achieved by dual-port ARM. Through controlling the bit width
of read/write dual-port RAM, achieve the exchange. E.G.: write RAM by the bit
width of 8bit and read RAM by the bit width of 1bit (here, the read speed has to
be 8 times of write speed). At this time, RAM achieves parallel/serial exchange.
In opposite, write RAM by the bit width of 1bit and read at 8bit. It finished the
serial/parallel exchange module.

(2) FIFO

FIFO is short for First In First Out. It is the first in first out data buffer. The
difference between it and the normal memory is that it doesn’t have the
external read/write address line. It can be used very easily. However, the
shortage is that it only can write / read data in order. The data address is
finished by internal read/write pointer add 1 automatically. It can do like the
normal memory that uses the address line to decide read or write the specified
address.

Some important specifications of FIF:

e FIFO width: that is THE WIDTH we often read in English material. It stands
for the data bit of one time operation of FIFO.

e FIFO depth: THE DEEPTH. It stands for that the FIFO can store several N
bit data (if width is N)

68

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

e full mark: When FIFO is full or to be full, one signal is sent by FIFO status
circuit which can stop FIFO written operation from writing to FIFO that may
cause overflow.
e empty mark: When FIFO is empty or to be empty, one signal is sent by FIFO
status circuit which can stop FIFO read operation from reading data of FIFO
that may cause underflow.
e read clock: read operation follows it. Read when the clock edge comes.
e write clock: write operation follows it. Write when the clock edge comes.
e read pointer: point to the next address to be read. Add 1 after read
automatically.
e Wwrite pointer: point to the next address to be wrote. Add 1 after write
automatically.
(read/write pointer is read/write address. But, this address cannot be chose
freely. It is continued)

According to the FIFO working clock area, we can separate FIFO to
synchronous FIFO and asynchronous FIFO. Synchronous FIFO means the
clock of read and write is the same one. Read/ write operation occurs when
clock edge comes. Asynchronous FIFO means the read clock is different
from write clock. Read clock is independent from the write one.

The difficulty of FIFO design is how to judge the FIFO empty/full status. To
guarantee the correction of data’s read and write, and avoid the overflow or
underflow, you cannot do write operation when FIFO is full. And you cannot do
read operation when the FIFO is empty. How to judge the status is the core of
the FIFO design. As the synchronous FIFO is hardly be used, here, we only
describe the asynchronous FOFI| empty/full mark’s generation.

In the design used trigger, you cannot avoid to meet the metastable
problem (we won’t introduce the metastable here. You may read the related
information). Metastable cannot be deleted in the circuit refers to trigger. You
can lower the possibility of it as much as you can. One way is to use Gray
code. In Gray code, there is only one bit change in the two neighbor symbols
(binary codes, in many situations, are many symbols change at the same
time). It could avoid the metastable status when the counter and clock are
synchronous. The shortage of Gray is that it only can defines the depth of 2n
and cannot defines FIFO depth freely as binary codes because Gray code
has to cycle one 2”n, or it isn’t the actual Gray code. Another way is to use
redundant trigger. Suppose P is the probability of one trigger's metable status,
the probability of two serial-level-connected triggers is P2. However, it will
cause the addition of delay. The metastable status will cause FIFO mistakes;
the value of read/write clock sampling address is different from the actual one.
All these will lead the address mistake of write or read. Consider the delay
usage, empty/full mark occurs not only when the FIFO is really empty/full. It
may occur before FIFO is empty/full. It is ok if it can guarantee there is no
overflow or underflow.

In our actual design, we use FIFO mostly in place that the asynchronous

69

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

data is synchronized. For example, when input/output’s delay (among chips,
PCB lines, some driver interface’s delay and etc.)can not be tested, or may
changed, you need to set up the synchronization which can use one sync
enable or sync signal to make the data be saved by RAM or FIFO. and achieve
the data synchronized purpose.

Following is the method of save data in RAM or FIFO. See data clock with
data sending provided by the previous level as write signal and write them
into RAM or FIFO. Then, use this level’s sampling clock (normal is the main
clock of data processing) to read them out. The key of this way is the
reliability of the writing data to RAM or FIFO. If using sync RAM or FIFO,
there must be a guiding signal with data sending which has the fix
relationship with data relatively dely. This signal can be the valid guiding to
data, and also can be the clock beat by the previous level. To low speed
data, you also can use asyn sampling RAM or FIFO. However, we do not
suggest you use it.

(4) Ping-Pong structure operation.

“Ping Pong Operation” is the process skill that often is used in data flow
controlling.

Ping-Pong operation’s processes are as following: input data flow
distributes the data flow time-equally to two data buffers by “input data chosen
unit”. Data buffer module can be any storage module. The often used are
dual-port RAM(DPRAM). single-port RAM(SPRAM). FIFO and etc. in the first
buffer cycle, cache the input data flow to “data buffer module 1”; in the second
buffer cycle, cache the input data flow to “data buffer module 2” by switch the
“‘input data chosen unit” and send the data in first cycle cached by “data buffer
module 1”7 to “data flow calculate processing module” to calculate after chose
by “input data chosen unit”. In the third buffer cycle, through the switch of
“input data chosen unit”, cache the inept data flow to “data buffer module 1”
and at the same time, switch the second cycle data cached by “data buffer
module 2” by “input data chosen data” and send to “data flow calculate
processing module” to calculate. Do in this cycle.

The most important feature of Ping-Pong operation is that it can send the
cached data flow to “data flow calculate processing module” to calculate and
process without stop by the switch of “input data chosen unit” and “output
data chosen unit” with each other by beat. Take the Ping-Pong module as a
whole body. Watch data on the two ports of this module. Input and output
data flows are continuous without any stops. So, it is very suitable to the
popline processing of data flow. Therefore, Ping-Pong operation is often used
in popline calculation to finish the seamless buffer and processing.

The second feature of Ping-Pong operation is that it can save the buffer
area. Like in the WCDMA baseband application, one frame is composed by
15 slots. Sometimes, it needs to delay one whole frame for a slot to process.
The direct way, is cache this frame data, delay one slot to process. At this
time, the length of this buffer is as 1 frame’s. Suppose data rate is 3.84Mbps,

70

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

the length of 1 frame is 10ms; the length of buffer area is 38400 bits. If using
Ping-Pong operation, only need to define two RAM (single port RAM) which
can cache 1 slot data. When write data to one RAM, read from the other one
and send them to processing unit. At this moment, each RAM’s capacity
only needs to be 2560 bits. The total of tow RAMs is only 5120 bits.

Besides, skillful use of Ping-Pong operation can make the low speed

module to process high speed data flow. Data buffer module uses dual-port
RAM and introduced a preprocessing module. This data preprocessing
module can do several calculations according to demands, such as in
WCDMA designing, it can do the job of input data flow’s dispreading,
descrambling and remove rotation. Suppose the speed of data flow input from
port A is 100Mbps, Ping-Pong buffer cycle is 10ms and following are analysis
of data rate at each port.

Speed of data flow input at port A is 100Mbps. In the first buffer cycle
10ms, through “input data chosen unit”, pass B1 and reach DPRAM1. B1’s
data flow rate is 100Mbps, too. DPRAM1 has to write 1MB data in 10ms. In the
same, in the second 10 ms, data flow is switched to DPRAM2. [1B2’s data
rate is 100Mbps also. DPRAM2 is written in 1MB data in the second 10 ms.

In the third 10ms, data flow is switched to DPRAM1 and DPRAM1 is written in
1Mb data.

Analysis carefully, you will find, until the third buffer cycle, the time of data
left to DPRAM1 read and sent to “data preprocessing module1” is 20ms in
total. Some engineers puzzled why the time is 20ms. This came from: first,
in the 10ms that write data to DPRAM2 in the second buffer cycle, DPRAM1
can do read operation. Besides, from the 5™ ms in the first buffer cycle(the
moment that the absolute time is 5ms), DPRAM1 can write data to the
address after 500K and at the same time , read data from address0. When
reach 10ms, DPRAM1 just finished 1MB data writing and has read 500K
data. In this buffer period, DPRAM1 read 5ms. In the third buffer cycle, from
5" ms(the moment that the absolute tie is 5ms), similarly, it can write data to
address after 500K and at the same time read data from address0. Read
another 5ms. Therefore, before data saved in the first cycle of DPRAM1 is
covered completely, DPRAM1 can read 20ms in the most and the data to be
read is 1TMB. Therefore, the data rate at port C is TMb/20ms=50Mbps. And
lowest data throughput of “data preprocessing module1” is 50Mbps.
Similarly, the lowest data throughput of “data preprocessing module 2” is
50Mbps also. In other words, through Ping-Pong operation, the timing of
“data preprocessing module “pressure is reduced. The required data
process rate is only half of the input data rate.

The substance of achieve process high speed data by low speed module
is: achieve the serial/parallel exchange by the buffer unit DPRAM, and use
data preprocessing module 1” and “data preprocessing module 2” to
process divided data. It is the withdrawals of the exchange between area
and speed.

71

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Example:

Here, use Ping-Pong operation to achieve an added. Its features are as
following: input one 32 bits data in each clock and take it as the 4 8-bit data.
Calculate the sum of these 4 data. Here use Ping-Pong operation to achieve.
In the first clock cycle, send input data to addition 1 unit. Do the addition. In
the second clock cycle, write the input data to addition 0 unit (addition unit is
still achieved by popline). In the third clock cycle, write data to addition 1 unit
again, at the same time, get the calculation result of the one sent to addition
1 unit in the first. In the forth clock cycle, output the calculation result of
addition 1 unit and addition 0 unit. In the fifth clock cycle, get calculation
result of output addition 0 unit. Cycle in this way, get the continue results at
the output port finally.

Its simulation result is as following:

See in the picture: data_in is the 32 bits data output. Each clock inputs
one data. data_out1 is the data sent to addition 1 unit after chose by the data
chosen unit. The upper data_out is the calculation result of addition 1 unit.
data_out2 is the data sent to addition 0 units after chose by the data chosen
unit. The lower data_out is the calculation result of the addition 0 unit. The
bottom data_out is the final calculation result. We can see that, from data
input to the final result, three clock cycles have been passed. In these three
cycles, the first cycle sends the data it read to addition 1 unit. The second
cycle sends the data it read to addition 0 unit, and the addition 1 unit does the
calculation at the same time. The third clock gets the calculation result of
addition 1 unit and addition 0 unit does calculation at the same time. And
output the calculation result of addition 1 unit until the forth cycle. Cycle in
turn and get the continuous output.

4.1.3 Experiment content

This experiment mainly is used to learn and master four kinds of data flow
controlling ways: popline, serial and parallel converter, FIFO and Ping-Pong
operation. Program separately to achieve their functions:

e design one popline adder with symbols.

e design a 1:8 serial and parallel converter

e design a interface FIFO(width bit 8, depth bit 128)

e program a adder by Ping-Pong operation.

72

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

4.1.4 Experiment steps

This experiment mainly is doing the simulation in the ModelSim working
environment. Detailed steps are as following:

1. Set up project

2. Load files

ﬁlﬂdelSil SE PLUS 6.0

File Edit ¥iew Format Compile Simulate Add Tools Hindew H

| pa R

II-.-'-.-II [n] rl::_ space

'l"IName |Statul Tvpe ||:In:|e|h-1|:u:|ifie-:|
azzembling_adder. v ? Yerlog 0 10/13/06 05:12:38 P

3. Compile
7EProject 1T

|‘l"| M ame |Statul Tupe |Elrdel Modified
azzembling_adder.v

06 05:1

Edit

Compile Compile Selected
Add to Project r Compile Al

Remowe from Project Compile Out-of-D ate
Cloze Project Compile Order...

Compile Report...

Properties. .. .
3 Compile Summary. ..

Project Sethngs...

Compile Properties...

4. Simulate
In page Library
EHIL ok, Library [/Modelkech_B.0/ex
mi adder Maodule O Ao 3z400changec
—] azzembling_adder b odule O Ao 3z400changec
=] changel_8 b odule O At 3z400changen
] data_zend Module 0 Ay 3z400changec
] fifB_128 Maodule O ftrod3z400changec
=17 b odule O At 3z400changen
[— Module D:Atred3z400changer
!:;'r“"‘l'f'te Module D:dtry/3zd00changec
vitalzg Edt Library $MODEL_TECH. /v
IEEE) Library FMODEL_TECH!. . fie
Recompile)
- rnodel: Optimize Library $MODEL_TECHY.

5. Add waveform
In page Sim

73

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

HFE*] | Objects —

| Design unit

gl ade View Declaration |'n|:u|ing___
—ul N
B o M hddioware
o Hib Create Wiave Add to D.ataflcuw
—l Ik Add bo List
L v Copy Log

(D CinA

In pop-up waveform window, choose - ' in the tool bar.

4.1.5 Experiment result

(—) popline adder

L%

L%

L%

EEEEEEEE

00000000 J1 0070101 o7 101070

b P | (R () - ol s B n_ el [1 N e I N Sl] e B [
[R LR

74

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Experimentl7 MicroBlaze control LED

experiment

5.1.1Experiment purpose

Know the structure of Micro Blaze
Learn the usage of Platform

Know the working principle of OPB bus
Master the basic usage of Micro Blaze

A WODN -

5.1.2 Experiment theory

The MicroBlaze32 soft-core processor of Xilinx Company is the fastest
soft processing solution in this field. The standard peripheral set, which
supports Core Connect bus, provides the designers with compatibility and
reuse ability. Running in the 150MHz clock, Micro Blaze processor can provide
125D-MIPS performance. It's very suitable for designing complicated systems
aiming at network, telecommunication, data communication, embedded type,
and consumer market.

(1) Micro Blaze structure

Micro Blaze is the microprocessor IP core based on FPGA of Xilinx
Company. Together with other peripheral IP core, it can design the
programmable SOPC. Micro Blaze processor is an independent 32-bit
instruction and data bus, adopting RISC framework and Harvard Architecture.
It can execute the programs stored in on-chip memory and external memory at
full speed and visit the data there.

e Internal structure

Inside Micro Blaze, there are 32 32-bit purpose registers and 2 32-bit
special function registers —— PC pointer and MSR state EFLAGS. In order to
improve performance, Micro Blaze also has instructions and data cache. All
the instructions are 32 bits in length; there are 3 operands and 2 addressing
odes. Instructions can be divided into logical operation, arithmetic operation,
branch, memory read/write, special instructions, etc. The assembly line of
instruction execution is parallel line, which can be classified into three
categories: fetching, decoding, and execution.

@® Core Connect technology

Core Connect is the on-chip bus communication chain developed by IBM,
which makes it possible to connect several source chips nuclear into a
complete new chip. Core Connect technology makes integration much easier
and enables the reuse of processor, system, and peripheral core in the

75

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

standard production platform design, achieving higher overall system
performance.

As is shown below, Core Connect bus architecture includes PLB, OPB, 1
bus bridge, 2 arbiters, and 1 DCR bus. Xilinx will provide all the embedded
processor users with IBM Core Connect permission, since it is the basis of all
the Xilinx embedded processors’ design. Micro Blaze processor uses the
same bus as IBM PowerPC, which serves as peripheral. Although Micro Blaze
soft processor is totally independent of Power PC, it enables the designers to
choose the method of operation on chip, including embedded PowerPC, and
share its peripheral.

e Core Connect architecture——OPB

The kernel can visit low speed and low performance system resources
through OPB. OPB is a completely sync bus; its function lies in a single bus
layer, rather than connect to the processor core directly. The OPB interface
provides separated 32-bit address bus and 32-bit data bus. With the help of
PLB to OPB bridge, the processor can visit peripheral through OPB, and in
turn, as OPB bus controller, the peripheral can visit the storage through PLB
with the help of OPB to PLB bridge.

e Core Connect architecture——Processor Local Bus (PLB)

PLB interface provides commands and data side with independent 32-bit
address and 64-bit data bus. The A device embedded with PLB interface can
be connected with the B device to read and write data through PLB signal,
which is supported by PLB. Each A device is linked to PLB through
independent address bus, read data bus, and write data bus. While PLB B
device is linked to PLB through shared but separated address bus, read data
bus, and write data bus. Therefore, to each data bus, there is complicated
transmission control and status signal.

In order to permit the A device to get the bus own ship through
competition, there is a central judgment institution authorizing the visit to PLB.
And this judgment institution is of enough flexibility to provide all kinds of
priority.

e Core Connect architecture——Device Control Register Bus (DCR)

Device control Register Bus (DCR) is designed for the data transmission
between CPU general purpose register (GPR) and the slave logical device
control register of DCR.
® (2) Development of Micro Blaze

Application EDK (Embedded Development Kits) can develop Micro Blaze
IP Core and build embedded system. The tool kit integrated the hardware
platform generator, the software platform generator, the simulation model
generator, software compiler, software debugging aids, etc; EDK provides the
integrated development environment XPS (Xilinx platform studio) so as to use
all the system tools to finish the whole procedure of embedded system
development. EDK is also embedded with some peripheral interface IP cores,

76

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

such as LMB,OPB bus interface, UART, interrupt controller, timer and so on,
with which we can build a relatively complete embedded micro processor
system.

The embedded system designed on FPGA can be classified into 5 grades.
Among these, the IP core can be developed on the lowest layer of hardware
resource, or set up the hardware development part of embedded system by
using developed IP core; The software development includes the development
of IP core device driver, application interface (API), and application layer
(algorithm).

Build the basic embedded system by utilizing Micro Blaze, which can be
connected with various kinds of peripheral IP core through standard bus
interface- LMB bus and OPB bus IP core.

Each IP core provided by EDK has corresponding device driver and
application interface, so the users can program their own application software
and algorithm routine by simply using the related function library. As for the IP
cores developed by users, they have to program corresponding drivers and
interface function themselves.

(3) Application of Micro Blaze

Usually the Micro processor + coprocessor structure is adopted in
software radio system: the micro processor mainly completes the work of
system communication and baseband processing by DSP, and the
coprocessor mainly complete the bottom algorithm of synchronization and
preprocessing on FPGA. It is relatively simple to adopt baseband processing
algorithm in this topic. Replace the DSP with application software processor so
that the whole system can be designed within one piece of FPGA, which can
simplify system structure and improve system’s overall performance.

For example, There are two tasks for the system on FPGA——send and
receive data. As for sending, FPGA first complete the initialization of hardware
algorithm, then receive serial data and save it into two-part SRAM; System
hardware algorithm part does the baseband processing to these data and
sends the result to DA converter. As for receiving, after receiving the data from
DA converter, FPGA will do baseband processing to the data and save it into
two-part SRAM; after that, send these data back to A device.

The system hardware can be designed under XPS integrated
development environment of EDK development kits. Add IP core, connect
system, and set each parameter in this environment. Since the hardware
algorithm module in the system is not standard module, the project should be
set in sub module way. Use the platform generator, according to MHS
document, to generate NGC document of embedded system sub module.
Afterwards, in the ISE design environment, connect the NGC documents with
hardware algorithm module through GPIO port exteriorly so as to constitute the
hardware module of the whole application system.

Each peripheral IP module on EDK has its own software function library.
Add the needed header files of peripheral function library into program by

77

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Libgen tools so that the peripherals can be operated and controlled through
calling these functions.

Designing the embedded system by adopting FPGA and Micro Blaze
realizes the function of multi-piece ASIC and narrows the receiver volume
greatly, making it easy for the system to achieve miniaturization and
integration. Utilizing hardware to achieve the capture and Frequency hopping
synchronous algorithm can accelerate the capture and tracking speed. The
experiment result proves the design of FPGA system feasible. With
high-capacity SDRAM disposed in system, high speed communication
interface such as Ethernet and USB added, and real-time operation system
run on the processor, it can be built into a relatively complete embedded
system based on FPGA, which is quite promising in fields such as network,
communication and consumption.

The design procedure of software and corresponding hardware
development on FPGA of Xilinx Company is as follows:

Xilinx Software IDE

Software Flow

Library M55 File
Generator SYSTEM. MSS

1
| |
1 1
I 1
1 1
| 1
1 I
1 1
1 1
1 1

Hardware Flow 1 ¢ mb_io.h, libe. libm, I
'\ and peripheral drivers 1
l .
1 1
' |
1
' |
1
' |
1
1 1

1

1

1

1

MHS File C Source

1
Platform Generator
1
I b e e e I

Core and 1P Metlists,
VHDL wrapper
Xilinx
Tools

(_ sysrem.ucf _) (— sysrem.bit

|

Hardware

5.1.3 Experiment content

This experiment controls 8LEDs on development board through using
processer MicroBlaze.

78

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

5.1.4 Experiment steps

1. Start Xilinx Platform Studio

Start — All program — . Xilinx Platform Studio 11 — Xilinx
Platform Studio
2. Setup a system

w Zilinx Platform 5tudio

Create new or open existing project

- ‘ :
Brs*B ®§§a5e Swystem Builder wizard (rec-:-mmended:]g

@ O Blank XPS project
E {:} Open a recent project

|Br|:-w5e for More Frojects. .. W

Browse EDEK examples (projects] on the wehb here

0K H A H T

Choose OK;

w Create New XFP5 Project Usaing B5H Wizard

Hew project

Froject file

|E:ftestfmicrnblazefsystem. xmp | ’ Browse ...

hdvanced options (optiomal: F1 for help)

D Set Project Peripheral Repositories

| | Browse ...

| ok || cenea

Choose the path of system to be generated in Project File. Choose OK;

79

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

< Haze System Builder

Telcome Board System Processor FPeripheral Cache Application Summary

Telcome to the Base System Builder
Thiz tool leads wou through the steps necessary for creating an embedded system.

Select One of the Following:

@I would like to create a new desig:né

O I would like to load an existing .bsh settingz file (zawed from a previous sezzion)

| Browse ...

< Back Hent »] I Cancel

Here, choose set a new design, Next>

80

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

< Haze System Builder

Welcome Board System FProceszor FPeripheral Cache Application Summary
(e ee e = - --—-)
Board Selection
Select a target dewelopment board.
Eoard
{:} I would like to create a system for the following dewelopment board
Board Yemdor [Xilime |
Eoard Hame |Sparta:n-3 Starter Board |
Board Rewizion |E |
@ I would like to create a system for a eustom board
Board Information
brehitecture Dlevice Package Speed Grade
|spartan3 v| |xc3leUD v| |ft256 v| |—4 vl
D Use Stepping |
FReset Folarity |£X
Related Information

This option allows you to rapidly and easily create a base or starter design that does not require a specific target board.
Using thiz option, wou must specify the FPGA device you will be using and external memories and I/0 dewices that sre on your
board Supported devices include DDE and SDEAM memory controllers, 10100 Ethernet, GFI0, and serial dewices such as UARTs,
IIC, and SFI. The generated system can be used to run simulations. If you would like to dowrleoad thiz system onto your
hardware, you wi1ll hawe to add the FPGA pin location constraints into the generated UCF file.

’ < Back] [Hent »] I Cancel l

Choose | would like to create a system for a custom board and development

board’s FPGA type: spartan3 xc3s1000 ft256 -4, Reset. Choose Active
LOW. Next>

81

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

< Haze System Builder

Welcome Board System FProceszor FPeripheral Cache Application Summary

System Configuration
Configure wour system.

orT

O Dual-Frocessor System

Select this option to create a desizn with a single Select thiz option to create a design with two

processor. Thiz Wizard will let weu configare the processors. This Wizard will let wyou configure the types

processor, the peripheral set and some major of the processors, the peripherals accessible to the two

configuration parameters for the peripherals. processors and the peripherals chared by the two
Processors.

Processor 1 Peripherals
Processor 1 5=
RS232 GPIO

Procassor 1

Shared Peripherals

Mailbox Mutex

Processor 1 Peripharals

R&232 GFIO

Processor 2 Peripherals

Processor 2 DDR EMAC

[< Back] [Hent » J [Cancel

Choose Single-Processor System and click Next>

82

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

< Haze System Builder

Welcome Board System Processor Peripheral Cache Application Summary

Frocessor Configuration

Configure the processzor ()

Beference Clock Frequency |50.DD | MHz

Frocessor 1| Configuration

Procezszor Type |MicroBlaze v|

System Clock Frequency |SD.DD v| MHz

Local Memory

Debug Interface |Un—Chip Hit Debuz Module |

Enable Floating Point Unit
4

’ < Back] [Hent »] I Cancel l

There is only one 50MHz clock on the development board. Therefore, here fill
50.00

Processor Type : MicroBlaze

Local Memory : 8 KB

Next>

83

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

< Haze System Builder

Welcome Board System FProceszor Peripheral Cache Application Summary

Feripheral Configuration
To add a periphersl, drag it from the “Awailable Peripherals” to the processzor peripheral list. To change a core parameter,

expand the core.

Available Feripherals Processor 1 (MicroBlare) Peripherals
Ekdd Devica. .. | I Export. .. l I Import. .. Tera Peramales
- dlmb_entlr
. Core Imb_bram_if_ecntlr
PerlpheraJ-. Hamez ilmb_cntlr
I0 Devices Core: 1lmb_bram_if entlr

[z Internal Feripherals
xps_bram_if_entlr
xps_timebaze_wdt
xps_timer

Add >

< Remowve

’ < Back] [Hent »] I Cancel

Add the port connects to the external and choose Add Device:-

w Add 10 Devices for Generic Board

Select an I0 dewice or external memory that iz on your

development board.

I0 Interface Type

|GPIEI v|
Dewvice
|LEIIS v|

[#]ifdd Dewice to syztem!

[0K H Cancel H Apply ” Help]

In pop-up dialogue choose 10 Interface Type : GPIO, Device : LEDS, OK

84

Eleckits Studio

< Haze System Builder

http://www.eleckits.com

Skype: eleckits2011

d System

Frocessor

Peripheral Cache

Application Summary

Feripheral Configurati

on

To add a periphersl, drag it from the “Awailable Peripherals” to the processzor peripheral list. To change a core parameter,

expand the core.

Processor 1 (MicroBlare) Peripherals

’ < Back

Available Feripherals
Ekdd Dewice. . . | I Export. .. l I Import. .. e Berenaics
: LEDS
. Core X¥pE_gpio
Bepiitierel, Limes GPI0 Data Hidth 3z v
I0 Devices Data pins are all inputs L]
[z} Internal Feripherals Use Interrupt]
xps_bram_if_entlr dlmb_ecntlr
xps_t@mebase_wdt Core: lmb_bram_if entlr
xps_timer ilmb_entlr
Core: 1lmb_bram_if entlr
Add >
] [Hext >] I Cancel

This experiment only needs to add LEDS. Choose Next>

85

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

< Haze System Builder

Welcome Board Sxstem Procezzor Peripheral Cache Application Summary

Cache Configuration

Select cache zize and cache memory for processor ().

Processor 1 MicroBlaze) Cache

There is no cacheable memory for this processor

< Back] | Hent » | I Cancel

86

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

< Haze System Builder

Welcome Board System FProceszor Peripheral Cache

Application Configuration
Configure the example applications.

Example Applicationsz
Application Option YValue
é iTest microblaze 0 i

Standard I0 mdm_01

Boot Memory 1lmb_cntlr

= Memory Test Testhpp_Memory_microblaze 0

Instructions 1lmb_cntlr

Data dlmb_cntlr

Interrupt Yector 1lmb_cntlr

B Peripheral Test Testhpp_FPeripheral microblaze 0

Instructions 1lmb_cntlr

Data dlmb_cntlr

o Int errupt Yector ilmb_cntlr

< Back] [Hent »] I Cancel

87

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

< Haze System Builder

Welcome Board Sxstem Proceszor Peripheral Cache Application Summary

Summary

Eelow iz the summary of the system wyou are creating.

System Summary

Core Name Instance Hame EBase Address High Addre=s
xps_gpie LELDS 051400000 0x5140FFFF
Imb_bram_if_entlr dlmb_entlr Q00000000 0x00001FFF
Imb_bram_if_entlr ilmb_entlr Q00000000 000001 FFF

File Location
(= Owerall
E:\testmicroblazeh=zyztem. xmp
E:htestmicroblarehsystem. mhs
E:htestimicroblazehsystem mzz
E
E

Shtesthmicroblazeidatalsystem. nef
Shtestimicroblazehete’fazt_runtime. opt
E:vtestimicroblazeeteidowrdload. cmd
Testhpp_Memory_microblaze 00
Testhpp_Feripheral mieroblaze 0

Sawe Baze System Builder (bsh) Settings File
|EZ\test\microblaxe\system.bsb |

¢ Back H Finizh H Dol]

88

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

o Filinz Platform Studio — E:\testimicroblaze\system.xmp — [System Assembly View]

% File Edit View Project MNardware GHSoftware Device Configwation Debug Simulation Hindow Help -3 x
ARl=45 1=, BEE| A X® e BRHEDRO MRS Pt Wi @XB »f2iF
Froject 05 x L L |4 Bus Interfaces | Ports | Addresses Euz Interface Filters
Flatforn ’é" ’é‘ Heme Bus Fene IF Type IP Version)| | & B Em‘;f““‘l .
onnecte
= Project Files + microbdase O Y[microblaze T.20.a Unconnectad
m;‘g ?i&: systen. mhs — dimb 1 lnb_vi0 1.00. 2 s | [By Bus Standard
e system.mzs idmb 71 lnb_vlD 1.00.a LhE
UCF File: duta/system. uck PLBV4G
iMEACT Command File: etefdownlead emd o wb_plb 9 plb_vie 1042 FSL
Inplementation Options File: eteffaste o—|| & dnb entir 7 lmb_bran_-- 2.10.b ¥ilink Point Te-
Bitgen Options File: etc/bitgen ut O—| - simb_entir ¢ lmb_bram_= 2. 10.b =] | = By Interface Type
7 Preject Options - Imb_bran 77 bram bleck 1.00.a Slaves
Device: xc3s1000£1256-4 Masters
Hetlist: TopLevel 1 - dn g ndn 1.00. e Master Slaves
Inplementation: XFE (Iflow) @ +- LEPS T xps_gpio 2.00.2 Wenitors
HIL eloek gener- 17 clock_gens 3.00.a IF Targets
Sim Model: BEHAVIORAL [P J proc_sys_- 2,001 Initiators

Design Susmary

Froject | Applications | IF Catalog @ Start Up Fage @ System Azzembly View |@ Elock Diagram I = Design Summary]

Console <07 X

Copied C:/Xilinx/11.1/EDK/data/xflow/bitgen spartan3.ut to etc directory
Generating Block Diagram : E:\test\microblaze‘\blockdiagram\system.svg...
Generated --- system.svg

< >

Console | Wernings | Errors

In Bus Interfaces, you can change property by double click item. Each
interface related to the process is list in Ports. The upper External Ports lists
external ports (pins need to be defined). In Addresses, you can modify
peripheral devices’ physical address. The programming after the address
stands for this device
This experiment needn’t modify.

4. Set download related

To download the generated processer to the development board, first of

all, you have to define pins.

Flatform

-I- Froject Filesxs
MHEZ File: system. mhs
MEE File: =system. mss
UCF File: data/swstem. uct
iMPACT Command File: etefdownload. emd
Implementation Options File: etcffast--
Bitgen Options File: etcofbitgen. ut
-} PFroject Options
Dewvice: xec3s1000f1256—4
Hetlist: Toplewel
Implementation: XP3 ({flow)
HOL: VHOL
Sim Model: BEHAVIORAL
Design Sommary

In Project Files submenu, double click UCF File: data\system\ucf. In the
right working area, you can see following files:

Net fpga_0_LEDS_GPIO_IO_O_pin<0> LOC=;

Net fpga_0_LEDS_GPIO_IO_O_pin<1> LOC=;

89

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Net fpga_ 0 LEDS_GPIO_IO_O _pin<2> LOC=;

Net fpga_ 0 LEDS_GPIO_IO_O _pin<3> LOC=;

Net fpga_ 0 LEDS_GPIO_IO_O_pin<4> LOC=;

Net fpga_0_LEDS_GPIO_IO_O_pin<5> LOC=;

Net fpga_ 0 LEDS_GPIO_IO_O_pin<6> LOC=;

Net fpga_ 0 LEDS_GPIO_IO_O_pin<7> LOC=;

Net fpga_0 clk_1_sys_clk_pin TNM_NET = sys_clk_pin;

TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 50000 kHz;

Net fpga_0 clk_1_sys_clk_pin LOC=;

Net fpga_0 rst 1 sys rst_pin TIG;

Net fpga_0 rst 1 _sys_rst pin LOC=;

Here list only 8 GPIO as there are only 8 LED on the development board.
First, delete the “#” in front of the pin (the line starts with “#” is notes). Second,
put the pin number between equal sign and semicolon in each line. After
modification, you can see:

Net fpga_ 0 LEDS_GPIO_IO_O_pin<0> LOC=AS5;

Net fpga_0 LEDS_GPIO_IO_O pin<1> LOC=AT7;

Net fpga_ 0 LEDS _GPIO_IO_O pin<2> LOC=A3;

Net fpga_ 0 LEDS_GPIO_IO_O_pin<3> LOC=D5;

Net fpga_ 0 LEDS _GPIO_IO_O pin<4> LOC=B4;

Net fpga_ 0 LEDS_GPIO_IO_O_pin<5> LOC=A4;

Net fpga_ 0 LEDS _GPIO_IO_O_pin<6> LOC=CS5;

Net fpga_0 LEDS_GPIO_IO_O_pin<7> LOC=B5;

Net fpga_0 clk_1_sys _clk_pin TNM_NET = sys_clk_pin;

TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 50000 kHz;

Net fpga 0 clk_1_sys clk_pin LOC=T9;

Net fpga_0 rst 1 _sys rst_pin TIG;

Net fpga_0 rst 1 _sys rst pin LOC=K14;

Save file and finish the 10 definitions.

In Project Files submenu, double click IMPACT Command
File:etc\download.cmd. In the right working area, you can see following files:

setMode -bscan

setCable -p auto

identify

assignfile -p 5 -file implementation/download.bit

program -p 5

quit

Here, you need to change 1 to 2 in line 4 and 5 because in the download

chain of our development board, JTAG download in on the second. There are
no other modifications required.

After modification, you can see:

setMode -bscan

setCable -p auto

identify

90

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

assignfile -p 2 -file implementation/download.bit
program -p 2

quit

Save file.

5. Write program C
After hardware design, comes software program. Choose Application page:

Applications =+ [0 & X

Software Projects
ﬂ Add Software Application Froject. ..
Default: microblaze 0O _bootloop
Default: microblaze 0 _xmdstub

= ey Froject: Testhpp Nemory microblaze

Processor: microblaze 0O

Executable: E:htestimicroblazeiTesthpe--
Compiler Options
Sources

Headers

In upper picture, you can see, Platform add a storage testing program for the
processer automatically. This program uses serial to output results which will
be introduced in next experiment. Here, we have to re-write a C program.
Detailed operations are as following:

First, double click Add Software Application Project..and then add a new

project:

“ Add Software Application FProject

Froject Hame |led
Hote: Project Hame cammot hawe spaces.

Proceszor microblaze [w
D Project 15 an ELF-only Project
Choose an ELF file.

Browse. ..

The ELF file iz as=zumed to be generated out=zide XFS
Default ELF name iz “sw project name’fexecutable. elf

0] [()

Write project name and used processer in upper dialogue. After OK, you can
see the new project has been added in the list:

= ml"rnject: led
Frocessor: microblaze [
Execntable: E:htesthmicroblarehledhex:---
Compiler Options
Sourcas
Headers

91

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Now, you need to click right on the new set storage testing project. Choose
Mark to Initialize BRAMs in the pop-up submenu. Activate this project because
Platform allows only one project be active.

:,- Project: led
Processor: microblaze 0
Executable: E:'test'microb
Compiler Options Build Froject
Sources
Headers

Set Compiler Options. ..
Mark to Initialize BRAM=

Clean Froject
Delete Project. ..

Malte Froject Inactiwve
Generate Linker Script. ..

In upper column, right click on Source and choose Add New File to set a new
C file for the project. Content is as following:

#include "xparameters.h"

void main()}{

int *i;

i = 0x81400000 ;

(*i) = Oxff000000 ;

}
Save file,
6. Download
First, operate on the software and in the tool bar choose Software:
Program C project: choose Generate Libraries and BSPs and will generate
drivers of peripheral devices’ and driver library. Configure STDIN/STDOUT
and generate interrupt processing mechanism.

@ Software Flatform Settings. ..

fzzigzn Defanlt Drivers

% enmerate Libraries and BSFP=

ﬂ Add Software Application Froject. ..

é Euild All User Applications
ret Program Size
E Generate Linker Script. ..

% Clean Libraries
% Clean Frograms
& Clean Software

Then choose Build All User Applications to program project C.

92

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

] (E Software Flatform Settings. ..
hzsign Defanlt Drivers

iUbg Generate Libraries and ESPs

ﬂ Add Software Application Project. ..

gt Build A1l Uzer Applications

Get Frogram Size
] E Generate Linker Secript. ..

% Clean Libraries
% Clean Programs
& Clean Software

Second, operate on hardware and in tool bar choose Hardware:
Generate Net list

« * Generate Hetlist

Fenerate Bitstream

g? Create or Import Feripheral. ..

E Configure Coprocessar. ..

Check and View Core Licenses. ..

| B8 Clean Wetlist
[Clean Bits
g Clean Hardware

Generate Bit stream
E]E Generate Hetlist

$ Generate Bitstream

g? Create or Import Peripheral. ..

E Configure Coprocessor. ..

Checlk and View Core Licenszes. ..

85 Clean Hetlist
@ Clean Bits
E Clean Hardware

Then can do Download and in the tool bar choose Device Configuration:
Download Bit stream

Dewice Configzuration [RIESIE

SRAM Vpdate Bitstream !

Downlead Bitstream

a Frogram Flash Memory

5.1.5 Experiment result

When the download is finished, you can see LED on the development
board turns on.

93

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

Experiment18 MicroBlaze control serial

communication experiment

5.2.1 Experiment purpose

1. Master the usage of Xilinx Platform Studio
2. Learn the usage of Platform Studio EDK
3. Write program C, and control serial ‘s output.

5.2.2 Experiment theory

OPB UART Late is a serial controller provided by EDK for MicroBlaze.
Features are as following:

e One sending pipe and one receiving pine (full-duplex).

e 16 characters’ sending and receiving FIFO

e Data bytes in character are configurate (5-8)

e Configurate parity is odd parity or even parity.

e Configurate Baud rate

UART Late provides four registers. In programming, user can achieve the
serial communication features by controlling the internal data information:

UART Late Register

Py iyl e o HREBEN]
MWL FIFO Hi ¥
Receive FIFO UART BASE_ADDRESS+0)
1
AT 3 % FIFO
Transmit FIFO UART BASE ADDRESS+4 |
1
Status Reg UART BASE ADDRESS+8 CINSEE I
Control Reg UART BASE ADDRESS+12] ERAE

Status Reg Status Register

94

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

{ir AR ik ERNAE]
0-23 (R A AAEH 0
24 PAR_ERROR AT AR 6 0
25 FRAME _ERROR U1 R 0
26 OVERUN_ERROR . AL 0
27 INTR_ENABLED t T RE 0
28 TX FIFO FULL #23% FIFO i
29 TX FIFO EMPTY 3% FIFO %%
30 RX_FIFO FULL P FIFO
31 RX FIFO VALID DATA P2 FIFO %%

Control Reg Control Register

{ir % AR fitiid =R DAIE]
0-26 fr AL AAEH 0
UART H K {if
27 ENABLE INTR " 0
28-29 PR A ARA%H 0
30 RST RX FIFO AT FIFO 0
31 RST TX FIFO AL FIFO 0

When UART Lite interrupt enable is not set yet, if any of the following
condition is met, the interrupt occours:

(1) If there is valid character existing in receiving FIFO, interrupt keeps
activation until accept FIFO is empty.

(2) When sending FIFO from non-empty to empty, after send the last
character of FIFO, the interrupt will be activated and keeps one clock circle.

Detailed design and achieving plan is as following:

95

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

DLME EU3
lbm_bram_if ecntlr
OFE EUS
bram block microblaze
lbm_bram if cntlr opb_mdm opb_uartlite
- - - ILME E1r3

FC

5.2.3 Experiment content

1. Test bram by MicroBlaze.
2. Use Platform to control serial output

5.2.4 Experiment steps

1. Set up a processer follow the experiment steps as last one. The
difference is when choosing the peripheral device, select the UART and bram.
Detailed operations are as following:

96

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

~ Base System Builder

Welcome Board System Proceszor Peripheral Cache Application Summary

Feripheral Configuration

To add a periphersl, drag it from the “Awailable Peripherals” to the processzor peripheral list. To change a core parameter,
expand the core.

Available Feripherals Processor 1 (MicroBlaze) Peripherals
[Add Device. ..] I Export. .. l [Import. .. ez e
dlmb_entlr
? Core Imb_bram_if_ecntlr
Feripheral Names SRS

o I0 Devices

= Intermal FPeripherals
wo xps_bram_if cntlr
cooxps_timebaze_wdt
Loxps_timer

o Add T0O Devices for Generic Board

Select an I0 device or external memory that is on your
development hoard

I0 Interface Type
[rager v

Device

.

hdd Device to system

o (Comea] (Cow J [o]

[< Back] [Hext »] [Cancel
Choose UART, RS232, OK

RS232
RE232 ¥ps uartlite W
Baud Eate JEO0 W
Data Bits [w
Parity 0dd W

Uze Interrupt

1

In upper dialog, you can adjust the RS232 interface’s property. Data Bits
is 8bit. Baud rate chooses 9600. Parity chooses Odd.
And you have to add devices in the system.
Peripheral Hames

- I0 Dewices

=} Internal Feripherals
xps_bram_1f_ entlyr
“owps_timebase_wdt
‘o xps_timer

Add xps_bram_if _cntlr and xps_timer and adjust the property.

97

Eleckits Studio

RS232

Core: xps_martlite, Baud Rate:

dimb_cntlr

Core: 1lmb_bram_if_cotlr
1lmb_ecntlr

Core; lmb_bram_if ecntlr
xps_bram_1f_entlyr [

Core: xps_bram_if cntlr,
xps_timer 0

Care

Count Width

Configure Mode

Uze Interrupt

Sire:

http://www.eleckits.com

QEO0 -~

g Kb

®ps_timer
32

One timer 15 prese %

Skype:

b

eleckits2011

The added xps_bram_if _cntlr as upper is the interface controller on the
OPB general and chip BlockRAM. Xps_timer is the clock controller of OPB
general line. Choose One timer is present.

Following experiment steps just follow the steps as before which can

generate one processor.

% Xilinz Platform Studio — E:\test\microblazeisystem.zmp — [System Assembly Viewl]

|8 File Edit VYiew Project Hardware Software Device Configwation Debug Simulation findow Help -8 x
D2 Eo === HE® oo HRABEORNSG| A A A EiwmdE @EXR » £ &
Preject 08 x L L| 4 Bus Interfaces | Perts | Addresses Eus Interface Filters
Flat forn M e Bus Hame IF Type IF Version 16| | & By Comnection
= = B B Connected
= Project Files [wricroblase O 7r mieroblaze T7.20.a - Unconnected
M File: sysiennhs ding Jr Inb_vi0 1.00.a || [B By Bus Standara
ile: system mss IHE
UCF File: datafsystem.ucf Sdmé 7 Inb_vl0 1002 PLEV4S
iWFACT Command File: etefdownload. emd . wh_plb 7 plb_wig L0 o Fal
Inplementation Options File! steffaste- o9 dind entlr 77 lmb_bram_--- 2.10.B Wilinz Point Te-
Gor B_ltgenoﬂpt_wns File: etefbitgen. ut & o Timb_entlr ¥ Inb_bram =+ 2.10.1b = ||| = By Interface Type
roject Options Slaves
Device: xe3si000FL256-4 £ ps bran i B ops_bran_- 100D Masters
Hetlist: TopLevel lf Inb_bram 77 bran_block 1.00.a Wactor Slaves
Inplementation: XPS (Cflow) - L xps_ bran 5 Fr bran_block 1.00. Woni tors
HIL: VHDL o ¢ ' mdn 1.00. e Targets
R Sim M;del BEHAYIORAL - xps_ timer & 7 wps_timer 1.0L.a Initiators
exi ummar
= v > R5232 Jr wps_martlite 1.0l a
clock gene-- 7 clock gen-- 3.00.a IF
Rroc sys o 37 proc_sys_=+ 2.00.a
< »
Froject | Applications | IP Catalag e System Aszembly View |® Elock Diagram]
Console 08 x
Generating Block Diagram : E:\test\microblaze\blockdiagram\system.svg...
Generated --—- system.svg
< >
Console | Warnings | Errors
Close the active window ;)

2. Adjust system property.

Double click the iIMPACT Command File in the Platform window:
etc\download.cmd. Change 1 to 2 in the line 4 and 5 as in our downloading
chain, JTAG mode download is in the second. Other setting does not need

adjustment.

After adjusting, it is as following:

setMode -bscan
setCable -p auto
identify

assignfile -p 2 -file implementation/download.bit

98

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

program -p 2

quit

Save file.

Double click UCF File in the window Platform: data\system.ucf. Define the
pins as following:

Net fpga_0 RS232_RX pin LOC=C2;

Net fpga_0 RS232_TX pin LOC=C1;

Net fpga_0 clk_1_sys_clk_pin TNM_NET = sys_clk_pin;

TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 50000 kHz;

Net fpga_0 clk_1_sys clk_pin LOC=T9;

Net fpga_0 rst 1 _sys rst_pin TIG;

Net fpga_0 rst 1 _sys rst pin LOC=K14;

Save file.
3. Add module C

In the left project setting area, choose Applications page and we can see
the testing C program provided by Platform:

Software Frojects

ﬂ Add Software Application Project. ..

Default: microblaze 0 _bootloop
Default: microblaze 0 _xmdstub
= gy Frojeet: TestApp Bemory_microblaze

+- Frocessor: microblaze O
Executable: E:htestimicroblaze'Testhp--
+- Compiler Optiens

E:\test'microblazehTesthpp Memory_--
Headers

Program C locates in Sources’ subdirectory. You can click to check and
do the necessary adjustment.
4. Download
Download steps are as experiment before.
After download is finished, if the downloaded is the chip memory testing
program, on the PC you can see the letters: testing successful.
5. Set up a project C by yourself:
Set up a new project as the experiment before and close the original RAM
testing program. Add program for the new project:
#include "xparameters.h"
#define UART_RX 0x84000000
#define UART_TX 0x84000004
#define UART_ST 0x84000008
#define UART_CT 0x8400000c

delay1()

{
int q;
for(q=0;9<16000;g++)
{;
}

99

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

¥
int main()
{
int i,da,db;
int *UART,;
char *j="hahaha\n1";
UART=(int*)UART _ST;
da=*(UART);
i=1;
dof
UART=(int*)UART _TX;
*(UART)=());
j++;
i++;
if((da&0x08)!=0)
{
UART=(int*)UART_CT,;
db=*(UART);
db=db|0x01;
*(UART)=db;
}
delay1();
while(*(j)!="1";
¥
Generate library, Build project, update downloading bit file and download.
6. Online debugging:
Use serial line to connect PC and development board and open serial
debugging software.

You will use two icons [d % in the Xilinx Platform Studio tool bar when

does the online debugging.

First, click [and comes the following dialog:

100

Eleckits Studio http://www.eleckits.com Skype:

2 114286073 RC3510006

Uersion
Optimization
Interconnect

Mo of Read Addr-Data Watchpoints...@
Mo of Write Addr-Data Watchpoints..B@
Instruction Cache Support

Data Cache Support...

Exceptions Support..

FPU Support

Hard Divider Support

Hard Multiplier Support

Barrel Shifter Support

MSR clrsset Instruction Support....on
Compare Instruction Support

Data Cache Write-back Support

Connected to "mb" target. id = 8

eleckits2011

Starting GDB server for "mh" target (id = B> at TCP port no 1234

nMD:

BEIE

Then click the tool bar % . Choose the file name set by yourself in coming

dialog:

OK

101

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

r=232_ ¢ — Source Window

File BRun ¥iew Controel Preferences Help
FHT 0| LT | AAEQ BT E | Fna:] | e
|rs232.c ~| |main -] [source -~

13 int mainQ) -
. 14 {
1% int i,da,db;
16 int =UART;
17 char =j="hahahain1";
18 UART={int=)UART_ST;
= 19 da==(UART);
28 i=1;
21 do{
22 UART={int=)UART_TX;
i 23 =(UART)==({j);
- 24 ey
25 i++;
. 26 if{(da&BxB8)*=0)
27 £
28 UART={int=)UART_CT;
29 db=*{UART) ;
. 38 db=db|Bxa1;
. 31 *{UART)=db;
32 3}
. 33 delayi();
. 34 juwhile(={j)*="1");
. 35 3}

lPngram not running, ©lick on run icon to start. | 1Cﬂ| 19

T
Click) and run the program. Continually click {} until program running

is finished. In the program processing, you can see the characters to be
displayed in serial debugging software one by one.

102

Eleckits Studio http://www.eleckits.com Skype: eleckits2011

||- s5Com3. 2 (fE¥:BHE(TT), £Whttp://wwv.mcubl.com,...

hahaha

I | TS wiEire | BEED | EkE0 [T meEs
£0S com ~| @ xeflEO | | WWW. MCUSL.cOM ¥ |
I | HdcTEF “PCEFTHETTER" L Mg ML EE

= (9500 «| [DTR [~ RTS t [k

S . o i B A BB, R E RO RER T
HHE(|8 T [~ FERTERE |1un ms/ix tzE%ES*Scm%fEESE:Fﬁ!1n*1ncmﬁ§1nnf‘n!%‘
{5 1H [MErEE | EEWIT hPCHTHEMEERL © 1563280005 € 103 TELE

3l Mone | FRFSEHRIAME ! T EICHRRIE Y EMA SERAS Rl
gRiesl None > | [45
5:0 BT COMIEFTH 9600bps 8 1 (CTS=0 DSE=0 RLSD=0

—_

www. mounl. com

5.2.5 Experiment result

Can output the specified characters from development board’s serial.

103

